Exercises on Control Theory by Stefano Patrì

Exercise 1. Solve the following control problem

$$
\max \int_{0}^{1}\left(u y-u^{2}-2 y^{2}\right) d x, \quad \text { subject to } \quad \dot{y}=y+u, y(0)=3,
$$

where $y=y(x)$ and $u=u(x)$.

Solution. The Hamiltonian $H(x, y, u, p)$, where $p=p(x)$, of the problem is

$$
H(x, y, u, p)=u y-u^{2}-2 y^{2}+p(y+u)
$$

from which the optimum conditions $\partial H / \partial u=0, \dot{p}=-\partial H / \partial y$ give

$$
y-2 u+p=0 \quad \text { and } \quad \dot{p}=-u+4 y-p
$$

From the first equation we get $u=(y+p) / 2$, from which, by substitution into $\dot{p}=-u+4 y-p$, the equation $\dot{p}=-(y+p) / 2+4 y-p$ follows.

We then write the dynamical system

$$
\binom{\dot{p}}{\dot{y}}=\left(\begin{array}{cc}
-3 / 2 & 7 / 2 \\
1 / 2 & 3 / 2
\end{array}\right)\binom{p}{y}, \quad \text { with } \quad A=\left(\begin{array}{cc}
-3 / 2 & 7 / 2 \\
1 / 2 & 3 / 2
\end{array}\right) .
$$

Since the eigenvalues of the constant matrix A are $\lambda=2,-2$ and the associated eigenvectors are $\boldsymbol{v}_{1}=(1,1)$ and $\boldsymbol{v}_{2}=(7,-1)$, respectively, we can conclude that the matrix A is diagonalizable and write the solution of the dynamical system in the form

$$
\binom{p}{y}=C_{1}\binom{1}{1} e^{2 x}+C_{2}\binom{7}{-1} e^{-2 x}
$$

that is by components

$$
\left\{\begin{array}{l}
p(x)=C_{1} e^{2 x}+7 C_{2} e^{-2 x} \\
y(x)=C_{1} e^{2 x}-C_{2} e^{-2 x}
\end{array}\right.
$$

The initial condition $y(0)=3$ and the trasversality condition $p(1)=0$ give the algebraic linear system $C_{1}-C_{2}=3$ and $C_{1} e^{2}+7 C_{2} e^{-2}=0$, from which we obtain the values of the constants $C_{1}=21 /\left(7+e^{4}\right)$ and $C_{2}=-3 e^{4} /\left(7+e^{4}\right)$ and finally the solution of the control problem

$$
\left\{\begin{array}{l}
p(x)=\frac{21}{7+e^{4}} e^{2 x}-\frac{21 e^{4}}{7+e^{4}} e^{-2 x} \\
y(x)=\frac{21}{7+e^{4}} e^{2 x}+\frac{3 e^{4}}{7+e^{4}} e^{-2 x}
\end{array}\right.
$$

with $u(x)=(y+p) / 2$ given by

$$
u(x)=\frac{21}{7+e^{4}} e^{2 x}-\frac{9 e^{4}}{7+e^{4}} e^{-2 x}
$$

