Date

Surname

\qquad

Name

ID Number

Exercise 1. Given the canonical basis $\mathcal{B}_{\mathbb{R}^{3}}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ and $\mathcal{B}_{\mathbb{R}^{4}}=\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}, \boldsymbol{f}_{4}\right\}$ of the vector spaces $\mathbb{R}^{3}, \mathbb{R}^{4}$, respectively, and the linear application $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{4}$ acting on the basis vectors of \mathbb{R}^{3} according the transformation laws

$$
\left\{\begin{array}{l}
L\left(\boldsymbol{e}_{1}\right)=\text { linear combination of } \boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}, \boldsymbol{f}_{4} \\
L\left(\boldsymbol{e}_{2}\right)=\text { linear combination of } \boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}, \boldsymbol{f}_{4} \\
L\left(\boldsymbol{e}_{3}\right)=\text { linear combination of } \boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \boldsymbol{f}_{3}, \boldsymbol{f}_{4}
\end{array}\right.
$$

1) write the matrix A associated to the linear application L with respect to the given basis;
2) find the subspaces kernel and image the linear application L determining a basis for both subspaces.

Let us consider the linear application $\tilde{L}: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{3}$ defined by the transformation laws of the components

$$
\left(y_{1}, y_{2}, y_{3}\right)=\tilde{L}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

with

$$
\begin{gathered}
y_{1}=\alpha_{1} x_{1}+\alpha_{2} x_{2}+\alpha_{3} x_{3}+\alpha_{4} x_{4}, \quad y_{2}=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}, \\
y_{3}=\gamma_{1} x_{1}+\gamma_{2} x_{2}+\gamma_{3} x_{3}+\gamma_{4} x_{4}
\end{gathered}
$$

where in the vector spaces $\mathbb{R}^{4}, \mathbb{R}^{3}$ the same basis $\mathcal{B}_{\mathbb{R}^{4}}, \mathcal{B}_{\mathbb{R}^{3}}$ as before are fixed.
3) Write the matrix B associated to the linear application \tilde{L} with respect to the given basis and determine the matrix, denoted by M, associated to the product of linear applications in the order $\tilde{L} L$.
4) Verify whether the matrix M is diagonalizable by taking into account that the vector $\boldsymbol{v}=(a, b, c)$ is an eigenvector of M.
If M is diagonalizable,
5) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by \mathcal{D} and write the matrix C of the basis change such that $C^{-1} M C=\mathcal{D}$;
6) write the diagonal matrix \mathcal{D} (without performing the matrix multiplication $C^{-1} M C$).

Exercise 2. Solve the following Cauchy problem

$$
\left\{\begin{array}{l}
a y^{\prime \prime \prime}(x)+b y^{\prime \prime}(x)+c y^{\prime}(x)+d y(x)=f(x) \\
y(0)=y_{0} \\
y^{\prime}(0)=y_{1} \\
y^{\prime \prime}(0)=y_{2}
\end{array}\right.
$$

Exercise 3. Find the optimal points of the function

$$
w=f(x, y, z)
$$

subject to the constraints

$$
\left\{\begin{array}{l}
g_{1}(x, y, z)=0 \\
g_{2}(x, y, z)=0
\end{array}\right.
$$

