Short overview of Financial Mathematics

Stefano Patrì

1 Exercise on the annuities

Find the interest rate i of the unitary period for the investment financial operation described by the following cash-flow

where the negative amounts of money are paid at the periods $0,1,2,3,4$, whereas the positive one is received at time 5 .

Solution

The equation of the financial operation is

$$
1000 r^{5}+2000 r^{4}+2000 r^{3}+2000 r^{2}+2000 r=10000
$$

whose simplified form can be obtained after division by 1000 , that is

$$
\begin{equation*}
r^{5}+2 r^{4}+2 r^{3}+2 r^{2}+2 r=10 \tag{1}
\end{equation*}
$$

where $r=1+i$. In order to solve the equation (1) numerically, we write it in two forms. We can obtain the first form by using the sum

$$
2 r^{4}+2 r^{3}+2 r^{2}+2 r=2\left(r^{4}+r^{3}+r^{2}+r\right)=\frac{2 r\left(r^{4}-1\right)}{r-1}
$$

and inserting it into the equation (1), from which the equation

$$
r^{5}+\frac{2 r\left(r^{4}-1\right)}{r-1}=10
$$

follows, and then, if we multiply both sides by $r-1$, the equation

$$
r^{5}(r-1)+2 r\left(r^{4}-1\right)=10(r-1)
$$

that is we get the first form of the the equation (1) given by

$$
\begin{equation*}
r^{6}+r^{5}=12 r-10 \tag{2a}
\end{equation*}
$$

The second form of the equation (1) is simply

$$
\begin{equation*}
r^{5}+2 r^{4}+2 r^{3}=-2 r^{2}-2 r+10 \tag{2b}
\end{equation*}
$$

Solution from the first form

If we now consider the first form (2a), we put $r \equiv x$, denoting the left-hand side by $f(x)$ and the right-hand side by $g(x)$, that is

$$
\left\{\begin{array}{l}
f(x)=x^{6}+x^{5} \\
g(x)=12 x-10
\end{array}\right.
$$

where $g(x)$ is the blue line (polynomial of first degree) in the figures below, while $f(x)$ is the red curve in the figures below passing through the origin and having increasing and convex behaviour because both derivatives

$$
f^{\prime}(x)=6 x^{5}+5 x^{4}, \quad f^{\prime \prime}(x)=30 x^{4}+20 x^{3}
$$

are nonnegative for nonnegative x.

If we draw $f(x), g(x)$ on the same cartesian plane, we obtain from the graphic point of view that the two analytic solutions of the equation (2a) correspond to the x-coordinate of the two intersection points P, Q of the two curves $f(x), g(x)$.

Fig. 1(c)

We have that the intersection point P has x-coordinate $x=1$ because it yields $f(1)=$ $g(1)=2$ and the inequality $f^{\prime}(1)=11<12=g^{\prime}(1)$ holds, that is the slope of the tangent line to the curve $f(x)$ in $x=1$ is less than the slope of the line $g(x)$. From the comparison between the slopes of the tangent line of the curve $f(x)$ in $x=1$ and the slope of the line $g(x)$, we get that there exists a second intersection point Q whose x-coordinate is less than 2 because for $x=2$ the value $f(2)=96$ on the red curve is greater than the value $g(2)=14$ on the blue curve.

The solution with financial consistency is the x-coordinate \bar{x} of the intersection point Q in fig. 1 (c) because it yields $\bar{x}>1$, from which we get the interest rate $i=\bar{x}-1$. In order to find the approximated value of \bar{x} with Excel, we use the following algorithm by considering fig. $1(\mathrm{c})$:

- we choose a value x_{1} belonging to the interval $(1,2)$;
- we insert the value x_{1} into both functions $f(x), g(x)$;
- if $f\left(x_{1}\right)<g\left(x_{1}\right)$, we choose the next value x_{2} such that $x_{2}>x_{1}$ and we repeat the operations with the value x_{2};
- if $f\left(x_{1}\right)>g\left(x_{1}\right)$, we choose the next value x_{2} such that $x_{2}<x_{1}$ and we repeat the operations with the value x_{2}.

Solution from the second form

If we now consider the second form (2b), we put $r \equiv x$, always denoting the left-hand side by $f(x)$ and the right-hand side by $g(x)$, that is

$$
\left\{\begin{array}{l}
f(x)=x^{5}+2 x^{4}+2 x^{3} \\
g(x)=-2 x^{2}-2 x+10
\end{array}\right.
$$

where $g(x)$ is the blue parabola (polynomial of second degree) in the figures below, while $f(x)$ is the red curve in the figures below passing through the origin and having increasing and convex behaviour because both derivatives

$$
f^{\prime}(x)=5 x^{4}+8 x^{3}+6 x^{2}, \quad f^{\prime \prime}(x)=20 x^{3}+24 x^{2}+12 x
$$

are nonnegative for nonnegative x.

If we draw $f(x), g(x)$ on the same cartesian plane, we obtain from the graphic point of view that the analytic solution of the equation (2b) corresponds to the x-coordinate, denoted by \bar{x}, of the intersection point P of the two curves $f(x), g(x)$.

We observe that the inequality $1<\bar{x}<2$ holds because it yields

$$
f(1)=5<6=g(1) \quad \text { and } \quad f(2)=80>-2=g(2) .
$$

In order to find the approximated value of \bar{x} with Excel, we use the following algorithm by considering fig. 2(c):

- we choose a value x_{1} belonging to the interval $(1,2)$;
- we insert the value x_{1} into both functions $f(x), g(x)$;
- if $f\left(x_{1}\right)<g\left(x_{1}\right)$, we choose the next value x_{2} such that $x_{2}>x_{1}$ and we repeat the operations with the value x_{2};
- if $f\left(x_{1}\right)>g\left(x_{1}\right)$, we choose the next value x_{2} such that $x_{2}<x_{1}$ and we repeat the operations with the value x_{2}.

2 General theory of the amortization of a loan

The amortization of a borrowed principal (loan), denoted by S and taken from a bank at time $t=0$, consists of determining at every fixed time k the following four quantities:

- the payment amount, denoted by R_{k},
- the remaining principal, or remaining debt, denoted by D_{k},
- the principal paid, denoted by C_{k},
- the interest paid, denoted by I_{k}.

If we consider a borrowed principal S, taken from a bank a time $t=0$, and a sequence of payment amounts R_{k} which must be paid every unit period $t=1,2,3, \ldots, n-1, n$, we can represent the financial operation through the following cash-flow.

If we put $v=1 /(1+i)$, the financial equivalence is given by the equality

$$
\begin{equation*}
S=R_{1} v+R_{2} v^{2}+R_{3} v^{3}+\cdots+R_{n-1} v^{n-1}+R_{n} v^{n}=\sum_{h=1}^{n} R_{h} v^{h} \tag{3}
\end{equation*}
$$

For every time $t \equiv k=1,2,3, \ldots, n-1, n$, we now define the remaining principal, or remaining debt, denoted by D_{k}, of the amortization as

$$
\begin{equation*}
D_{k}=\frac{1}{v^{k}}\left(S-\sum_{h=1}^{k} R_{h} v^{h}\right) \tag{4}
\end{equation*}
$$

that, by substitution of (3), assumes the form

$$
D_{k}=\frac{1}{v^{k}}\left(S-\sum_{h=1}^{k} R_{h} v^{h}\right)=\frac{1}{v^{k}}\left(\sum_{h=1}^{n} R_{h} v^{h}-\sum_{h=1}^{k} R_{h} v^{h}\right)=\sum_{h=k+1}^{n} R_{h} v^{h-k}
$$

from which we get the remaining debt D_{k-1} at time $t=k-1$

$$
\begin{equation*}
D_{k-1}=\sum_{h=k}^{n} R_{h} v^{h-k+1} . \tag{5}
\end{equation*}
$$

It is straightforward to notice that the remaining debt D_{k}, defined by (4) where S is given by (3), is obviously decreasing and satisfies both accounting properties $D_{0}=S$ and $D_{n}=0$.

The significance and the interpretation of the definition (4) are straightforward: the quantity D_{k} given by (4) effectively represents the remaining debt at time k because it is the difference between the initial debt S and what one has already paid until time k, calculated at time k through the multiplication by the accumulation factor $1 / v^{k} \equiv(1+i)^{k}$.

Further, for every time $t \equiv k=1,2,3, \ldots, n-1, n$, we define the principal paid, denoted by C_{k}, of the amortization through the relation

$$
\begin{equation*}
\sum_{h=1}^{k} C_{h}=S-D_{k} \tag{6}
\end{equation*}
$$

from which we get the accounting property corresponding to $D_{n}=0$

$$
\begin{equation*}
\sum_{h=1}^{n} C_{h}=S-D_{n}=S \tag{7}
\end{equation*}
$$

the remaining debt

$$
\begin{equation*}
D_{k}=S-\sum_{h=1}^{k} C_{h} \tag{8}
\end{equation*}
$$

and then the difference between two consecutive remaining debts

$$
\begin{equation*}
D_{k-1}-D_{k}=\left(S-\sum_{h=1}^{k-1} C_{h}\right)-\left(S-\sum_{h=1}^{k} C_{h}\right)=\sum_{h=1}^{k} C_{h}-\sum_{h=1}^{k-1} C_{h}=C_{k} \tag{9}
\end{equation*}
$$

Finally, for every time $t \equiv k=1,2,3, \ldots, n-1, n$, we define the interest paid, denoted by I_{k}, as the difference

$$
\begin{equation*}
I_{k}=R_{k}-C_{k} \tag{10}
\end{equation*}
$$

which satisfies $I_{k}=i D_{k-1}$ because, by virtue of (5) and of $(1-v) / v=i$, it yields

$$
I_{k}=R_{k}-C_{k}=R_{k}-D_{k-1}+D_{k}=R_{k}-\sum_{h=k}^{n} R_{h} v^{h-k+1}+\sum_{h=k+1}^{n} R_{h} v^{h-k}=
$$

$$
\begin{aligned}
& =R_{k}-R_{k} v-v \sum_{h=k+1}^{n} R_{h} v^{h-k}+\sum_{h=k+1}^{n} R_{h} v^{h-k}=R_{k}(1-v)+\frac{1-v}{v^{k}} \sum_{h=k+1}^{n} R_{h} v^{h}= \\
& =\frac{1-v}{v^{k}}\left(R_{k} v^{k}+\sum_{h=k+1}^{n} R_{h} v^{h}\right)=\frac{1-v}{v^{k}} \sum_{h=k}^{n} R_{h} v^{h}=\frac{1-v}{v} \sum_{h=k}^{n} R_{h} v^{h-k+1}=i D_{k-1},
\end{aligned}
$$

that is

$$
\begin{equation*}
I_{k}=i D_{k-1} \tag{11}
\end{equation*}
$$

In the case the problem data are the initial loan S and a condition about the payment amounts R_{k}, then we perform the following steps according the following sequence:

- we determine the payment amounts R_{k} from equation (3);
- we determine the remaining debt D_{k} from equation (4);
- we determine the principal paid C_{k} from equation (6);
- we determine the interest paid I_{k} from equation (10).

In the case the problem data are the initial loan S and a condition about the principal paid C_{k}, then we perform the following steps according the following sequence:

- we determine the principal paid C_{k} from the given conditions on the principal paid;
- we determine the remaining debt D_{k} from equation (8);
- we determine the payment amounts R_{k} from equation (4);
- we determine the interest paid I_{k} from equation (10).

2.1 French amortization

The french amortization of a borrowed principal (loan) is characterized by a constant payment amount. If we consider a borrowed principal S, taken from a bank a time $t=0$, and a constant payment amount R which must be paid every unit period $t=1,2,3, \ldots, n-1, n$, we can represent the financial operation through the following cash-flow.

If we put $v=1 /(1+i)$, the financial equivalence (3) assumes the form

$$
S=R v+R v^{2}+R v^{3}+\cdots+R v^{n-1}+R v^{n}
$$

that is

$$
S=\frac{v\left(1-v^{n}\right)}{1-v} R
$$

from which the value of payment amount

$$
\begin{equation*}
R=\frac{1-v}{v\left(1-v^{n}\right)} S \tag{12}
\end{equation*}
$$

follows, where we have used the formula of the sum

$$
\begin{equation*}
1+v+v^{2}+v^{3}+\cdots+v^{n-2}+v^{n-1}=\frac{1-v^{n}}{1-v} \tag{13}
\end{equation*}
$$

For every time $t \equiv k=1,2,3, \ldots, n-1, n$, the remaining principal, or remaining debt, denoted by D_{k}, of the amortization, defined by (4), takes the form

$$
\begin{equation*}
D_{k}=\frac{1}{v^{k}}\left(S-\sum_{h=1}^{k} R v^{h}\right) \tag{14a}
\end{equation*}
$$

whose expansion is

$$
\begin{gathered}
D_{k}=\frac{1}{v^{k}}\left(S-\sum_{h=1}^{k} R v^{h}\right)=\frac{S-R v-R v^{2}-R v^{3}-\cdots-R v^{k}}{v^{k}}= \\
=\frac{S-R v\left(1+v+v^{2}+v^{3}+\cdots+v^{k-2}+v^{k-1}\right)}{v^{k}}= \\
=\frac{S}{v^{k}}-\frac{R v\left(1-v^{k}\right)}{v^{k}(1-v)}=\frac{S}{v^{k}}-\left[\frac{1-v}{v\left(1-v^{n}\right)} S\right] \frac{v\left(1-v^{k}\right)}{v^{k}(1-v)}=\frac{1-v^{n-k}}{1-v^{n}} S,
\end{gathered}
$$

that is

$$
\begin{equation*}
D_{k}=\frac{1-v^{n-k}}{1-v^{n}} S \tag{14b}
\end{equation*}
$$

which satisfies both accounting properties $D_{0}=S$ and $D_{n}=0$.
Further, for every time $t \equiv k=1,2,3, \ldots, n-1, n$, the principal paid, denoted by C_{k}, of the amortization, defined by (6), allows to compute the expressions C_{i}, inductively.

For $k=1$ we obtain

$$
C_{1}=S-D_{1}=S-\frac{1-v^{n-1}}{1-v^{n}} S=\frac{v^{n-1}-v^{n}}{1-v^{n}} S
$$

that is

$$
\begin{equation*}
C_{1}=\frac{v^{n-1}-v^{n}}{1-v^{n}} S \tag{15a}
\end{equation*}
$$

for $k=2$ we have $C_{1}+C_{2}=S-D_{2}$, that is

$$
\begin{aligned}
& C_{2}=S-C_{1}-D_{2}=S-\frac{v^{n-1}-v^{n}}{1-v^{n}} S-\frac{1-v^{n-2}}{1-v^{n}} S= \\
& =\left[\frac{1-v^{n}-v^{n-1}+v^{n}-1+v^{n-2}}{1-v^{n}}\right] S=\frac{v^{n-2}-v^{n-1}}{1-v^{n}} S= \\
& \quad=\frac{v^{n-1}-v^{n}}{v\left(1-v^{n}\right)} S=\frac{C_{1}}{v}=C_{1}(1+i) ;
\end{aligned}
$$

for $k=3$ we have $C_{1}+C_{2}+C_{3}=S-D_{3}$, that is

$$
\begin{aligned}
C_{3}=S- & C_{1}-C_{2}-D_{3}=S-\frac{v^{n-1}-v^{n}}{1-v^{n}} S-\frac{v^{n-1}-v^{n}}{v\left(1-v^{n}\right)} S-\frac{1-v^{n-3}}{1-v^{n}} S= \\
& =\left[\frac{v-v^{n+1}-v^{n}+v^{n+1}-v^{n-1}+v^{n}-v+v^{n-2}}{v\left(1-v^{n}\right)}\right] S= \\
& =\frac{v^{n-2}-v^{n-1}}{v\left(1-v^{n}\right)} S=\frac{v^{n-1}-v^{n}}{v^{2}\left(1-v^{n}\right)} S=\frac{C_{1}}{v^{2}}=C_{1}(1+i)^{2}
\end{aligned}
$$

from which, by induction, we get the expression of the principal paid

$$
\begin{equation*}
C_{k}=\frac{v^{n-1}-v^{n}}{v^{k-1}\left(1-v^{n}\right)} S=\frac{C_{1}}{v^{k-1}}=C_{1}(1+i)^{k-1} \tag{15b}
\end{equation*}
$$

which satisfies both accounting properties (7) and (9) because it yields

$$
\begin{aligned}
& \sum_{k=1}^{n} C_{k}=C_{1}+C_{2}+C_{3}+\cdots+C_{n-1}+C_{n}=C_{1}+\frac{C_{1}}{v}+\frac{C_{1}}{v^{2}}+\frac{C_{1}}{v^{3}}+\cdots+\frac{C_{1}}{v^{n-2}}+\frac{C_{1}}{v^{n-1}}= \\
& =\frac{C_{1}}{v^{n-1}}\left(1+v+v^{2}+v^{3}+\cdots+v^{n-2}+v^{n-1}\right)=\frac{C_{1}}{v^{n-1}} \frac{1-v^{n}}{1-v}=\frac{v^{n-1}-v^{n}}{v^{n-1}\left(1-v^{n}\right)} S \frac{1-v^{n}}{1-v}=S
\end{aligned}
$$

that is

$$
\sum_{k=1}^{n} C_{k}=S
$$

and
$D_{k-1}-D_{k}=\frac{1-v^{n-k+1}}{1-v^{n}} S-\frac{1-v^{n-k}}{1-v^{n}} S=\frac{v^{n-k}-v^{n-k+1}}{1-v^{n}} S=\frac{v^{n-1}-v^{n}}{v^{k-1}\left(1-v^{n}\right)} S=\frac{C_{1}}{v^{k-1}}=C_{k}$,
that is $D_{k-1}-D_{k}=C_{k}$. The expression (15b) shows that the principal paid C_{k} of the french amortization increases from C_{1} in geometric progression.

Finally, for every time $t \equiv k=1,2,3, \ldots, n-1, n$, the interest paid, denoted by I_{k}, defined by (10), is given by

$$
\begin{equation*}
I_{k}=R-C_{k}, \tag{16}
\end{equation*}
$$

whose expansion is

$$
I_{k}=R-C_{k}=\frac{1-v}{v\left(1-v^{n}\right)} S-\frac{v^{n-1}-v^{n}}{v^{k-1}\left(1-v^{n}\right)} S=\frac{v^{k-2}-v^{k-1}-v^{n-1}+v^{n}}{v^{k-1}\left(1-v^{n}\right)} S
$$

and it is straightforward to notice that the relation $I_{k}=i D_{k-1}$ in (11) holds because we have

$$
\begin{aligned}
i D_{k-1} & =\left(\frac{1}{v}-1\right) D_{k-1}=\left(\frac{1}{v}-1\right) \frac{1-v^{n-k+1}}{1-v^{n}} S=\frac{(1-v)\left(1-v^{n-k+1}\right)}{v\left(1-v^{n}\right)} S= \\
& =\frac{v^{k-2}(1-v)\left(1-v^{n-k+1}\right)}{v^{k-1}\left(1-v^{n}\right)} S=\frac{v^{k-2}-v^{k-1}-v^{n-1}+v^{n}}{v^{k-1}\left(1-v^{n}\right)} S=I_{k}
\end{aligned}
$$

2.2 Italian amortization

The italian amortization of a loan S is characterized by the costant principal paid, denoted by C, from which, by virtue of the property (7), we get $C=S / n$.

From the equation (6) defining the principal paid C_{k}, we get

$$
D_{k}=S-\sum_{h=1}^{k} C_{k}=S-\sum_{h=1}^{k} C=S-\sum_{h=1}^{k} \frac{S}{n}=S-\frac{k S}{n}=\frac{n-k}{n} S,
$$

that is

$$
\begin{equation*}
D_{k}=\frac{n-k}{n} S \tag{17}
\end{equation*}
$$

From the equation (4), rewritten in the form

$$
\sum_{h=1}^{k} R_{h} v^{h}=S-v^{k} D_{k}
$$

and connecting the remaining debt D_{k} and the payment amount R_{k}, we can obtain R_{k} for every time $t \equiv k=1,2,3, \ldots, n-1, n$, inductively. For $k=1$ we have

$$
R_{1}=\frac{S-v D_{1}}{v}=\frac{S}{v}-D_{1}=\frac{S}{v}-\frac{n-1}{n} S=\left(\frac{1-v}{v}+\frac{1}{n}\right) S=\left(\frac{1}{v}-1+\frac{1}{n}\right) S
$$

for $k=2$ we have

$$
\begin{gathered}
R_{2}=\frac{S-v^{2} D_{2}-R_{1} v}{v^{2}}=\frac{S}{v^{2}}-D_{2}-\frac{R_{1}}{v}=\frac{S}{v^{2}}-\frac{n-2}{n} S-\left(\frac{1}{v}-1+\frac{1}{n}\right) \frac{S}{v}= \\
=\left(\frac{1}{v^{2}}-1+\frac{2}{n}-\frac{1}{v^{2}}+\frac{1}{v}-\frac{1}{n v}\right) S=\left(\frac{1}{v}-1+\frac{1}{n}\right) S-\left(\frac{1}{n v}-\frac{1}{n}\right) S=R_{1}-\left(\frac{1}{n v}-\frac{1}{n}\right) S
\end{gathered}
$$

for $k=3$ we have

$$
\begin{gathered}
R_{3}=\frac{S-v^{3} D_{3}-R_{1} v-R_{2} v^{2}}{v^{3}}=\frac{S}{v^{3}}-D_{3}-\frac{R_{1}}{v^{2}}-\frac{R_{2}}{v}= \\
=\left(\frac{1}{v^{3}}-\frac{n-3}{n}-\frac{1}{v^{3}}+\frac{1}{v^{2}}-\frac{1}{n v^{2}}-\frac{1}{v^{2}}+\frac{1}{v}-\frac{1}{n v}+\frac{1}{n v^{2}}-\frac{1}{n v}\right) S= \\
=\left(-\frac{n-3}{n}+\frac{1}{v}-\frac{2}{n v}\right) S=\left(\frac{1}{v}-1+\frac{1}{n}-\frac{2}{n v}+\frac{2}{n}\right) S= \\
=\left(\frac{1}{v}-1+\frac{1}{n}\right) S-2\left(\frac{1}{n v}-\frac{1}{n}\right) S=R_{1}-2\left(\frac{1}{n v}-\frac{1}{n}\right) S,
\end{gathered}
$$

from which we inductively get the expressione at any time $t=k$

$$
\begin{equation*}
R_{k}=R_{1}-(k-1)\left(\frac{1}{n v}-\frac{1}{n}\right) S \tag{18}
\end{equation*}
$$

The expression (18) shows that the payment amount R_{k} of the italian amortization decreases from R_{1} in arithmetic progression. We can verify that the payment amount R_{k} of the italian amortization satisfies the financial equivalence condition

$$
\begin{equation*}
\sum_{k=1}^{n} R_{k} v^{k}=S \tag{19}
\end{equation*}
$$

for which we need the formula

$$
\begin{aligned}
& \sum_{k=1}^{n} k v^{k}=v \sum_{k=1}^{n} k v^{k-1}=v \sum_{k=1}^{n} \frac{d}{d v} v^{k}=v \frac{d}{d v} \sum_{k=1}^{n} v^{k}=v \frac{d}{d v}\left(v \frac{1-v^{n}}{1-v}\right)= \\
& =v\left[\frac{1-v^{n}}{1-v}+v \frac{-n v^{n-1}(1-v)+1-v^{n}}{(1-v)^{2}}\right]=\frac{v-v^{n+1}-n v^{n+1}+n v^{n+2}}{(1-v)^{2}}
\end{aligned}
$$

that is

$$
\begin{equation*}
\sum_{k=1}^{n} k v^{k}=\frac{v-v^{n+1}-n v^{n+1}+n v^{n+2}}{(1-v)^{2}} \tag{20}
\end{equation*}
$$

By applying the formula (20) and the formula (13), we have

$$
\begin{gathered}
\sum_{k=1}^{n} R_{k} v^{k}=\left[R_{1}+\left(\frac{1}{n v}-\frac{1}{n}\right) S\right] \sum_{k=1}^{n} v^{k}-\left(\frac{1}{n v}-\frac{1}{n}\right) S \sum_{k=1}^{n} k v^{k}= \\
=S\left[\left(\frac{1}{v}-1+\frac{1}{n}+\frac{1}{n v}-\frac{1}{n}\right) \sum_{k=1}^{n} v^{k}-\left(\frac{1}{n v}-\frac{1}{n}\right) \sum_{k=1}^{n} k v^{k}\right]= \\
=S\left[\left(1-v+\frac{1}{n}\right) \frac{1-v^{n}}{1-v}-\left(\frac{1}{n v}-\frac{1}{n}\right) \frac{v-v^{n+1}-n v^{n+1}+n v^{n+2}}{(1-v)^{2}}\right]=
\end{gathered}
$$

$$
\begin{aligned}
& =S\left[\left(\frac{n-n v+1}{n}\right) \frac{1-v^{n}}{1-v}-\left(\frac{1-v}{n}\right) \frac{1-v^{n}-n v^{n}+n v^{n+1}}{(1-v)^{2}}\right]= \\
& =S\left[\left(\frac{n-n v+1}{n}\right) \frac{1-v^{n}}{1-v}-\frac{1-v^{n}-n v^{n}+n v^{n+1}}{n(1-v)}\right]= \\
& =\frac{(n-n v+1)\left(1-v^{n}\right)-1+v^{n}+n v^{n}-n v^{n+1}}{n(1-v)} S= \\
& =\frac{n-n 0^{\pi}-n v+n v^{n+士}+1-y^{\mu x}-x+y^{\mu x}+n v^{\pi}-n v^{n+士}}{n(1-v)} S=\frac{n(1-v)}{n(1-v)} S=S,
\end{aligned}
$$

that is we have proved the equality（19）．

