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1 Exercise on the annuities

Find the interest rate i of the unitary period for the investment financial operation described

by the following cash-flow

0

−1000

1

−2000

2

−2000

3

−2000

4

−2000

5

10000

where the negative amounts of money are paid at the periods 0, 1, 2, 3, 4, whereas the positive

one is received at time 5.

Solution

The equation of the financial operation is

1000r5 + 2000r4 + 2000r3 + 2000r2 + 2000r = 10000,

whose simplified form can be obtained after division by 1000, that is

r5 + 2r4 + 2r3 + 2r2 + 2r = 10, (1)

where r = 1+ i. In order to solve the equation (1) numerically, we write it in two forms. We

can obtain the first form by using the sum

2r4 + 2r3 + 2r2 + 2r = 2(r4 + r3 + r2 + r) =
2r(r4 − 1)

r − 1

and inserting it into the equation (1), from which the equation

r5 +
2r(r4 − 1)

r − 1
= 10



follows, and then, if we multiply both sides by r − 1, the equation

r5(r − 1) + 2r(r4 − 1) = 10(r − 1),

that is we get the first form of the the equation (1) given by

r6 + r5 = 12r − 10. (2a)

The second form of the equation (1) is simply

r5 + 2r4 + 2r3 = −2r2 − 2r + 10. (2b)

Solution from the first form

If we now consider the first form (2a), we put r ≡ x, denoting the left-hand side by f(x)

and the right-hand side by g(x), that is

{

f(x) = x6 + x5

g(x) = 12x− 10,

where g(x) is the blue line (polynomial of first degree) in the figures below, while f(x) is the

red curve in the figures below passing through the origin and having increasing and convex

behaviour because both derivatives

f ′(x) = 6x5 + 5x4, f ′′(x) = 30x4 + 20x3

are nonnegative for nonnegative x.
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x

g(x)

Fig. 1(a) Fig. 1(b)
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If we draw f(x), g(x) on the same cartesian plane, we obtain from the graphic point of

view that the two analytic solutions of the equation (2a) correspond to the x-coordinate of

the two intersection points P,Q of the two curves f(x), g(x).

x

f(x), g(x)

1 x̄ 2

Fig. 1(c)

P

Q

We have that the intersection point P has x-coordinate x = 1 because it yields f(1) =

g(1) = 2 and the inequality f ′(1) = 11 < 12 = g′(1) holds, that is the slope of the tangent

line to the curve f(x) in x = 1 is less than the slope of the line g(x). From the comparison

between the slopes of the tangent line of the curve f(x) in x = 1 and the slope of the line

g(x), we get that there exists a second intersection point Q whose x-coordinate is less than

2 because for x = 2 the value f(2) = 96 on the red curve is greater than the value g(2) = 14

on the blue curve.

The solution with financial consistency is the x-coordinate x̄ of the intersection point Q

in fig. 1(c) because it yields x̄ > 1, from which we get the interest rate i = x̄− 1. In order to

find the approximated value of x̄ with Excel, we use the following algorithm by considering

fig. 1(c):

• we choose a value x1 belonging to the interval (1, 2);

• we insert the value x1 into both functions f(x), g(x);

• if f(x1) < g(x1), we choose the next value x2 such that x2 > x1 and we repeat the

operations with the value x2;

• if f(x1) > g(x1), we choose the next value x2 such that x2 < x1 and we repeat the

operations with the value x2.
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Solution from the second form

If we now consider the second form (2b), we put r ≡ x, always denoting the left-hand

side by f(x) and the right-hand side by g(x), that is
{

f(x) = x5 + 2x4 + 2x3

g(x) = −2x2
− 2x+ 10,

where g(x) is the blue parabola (polynomial of second degree) in the figures below, while

f(x) is the red curve in the figures below passing through the origin and having increasing

and convex behaviour because both derivatives

f ′(x) = 5x4 + 8x3 + 6x2, f ′′(x) = 20x3 + 24x2 + 12x

are nonnegative for nonnegative x.

x

f(x)

x

g(x)

Fig. 2(a) Fig. 2(b)

If we draw f(x), g(x) on the same cartesian plane, we obtain from the graphic point of

view that the analytic solution of the equation (2b) corresponds to the x-coordinate, denoted

by x̄, of the intersection point P of the two curves f(x), g(x).

x

f(x), g(x)

1 x̄ 2

P Fig. 2(c)

We observe that the inequality 1 < x̄ < 2 holds because it yields

f(1) = 5 < 6 = g(1) and f(2) = 80 > −2 = g(2).

In order to find the approximated value of x̄ with Excel, we use the following algorithm

by considering fig. 2(c):
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• we choose a value x1 belonging to the interval (1, 2);

• we insert the value x1 into both functions f(x), g(x);

• if f(x1) < g(x1), we choose the next value x2 such that x2 > x1 and we repeat the

operations with the value x2;

• if f(x1) > g(x1), we choose the next value x2 such that x2 < x1 and we repeat the

operations with the value x2.

2 General theory of the amortization of a loan

The amortization of a borrowed principal (loan), denoted by S and taken from a bank at

time t = 0, consists of determining at every fixed time k the following four quantities:

• the payment amount, denoted by Rk,

• the remaining principal, or remaining debt, denoted by Dk,

• the principal paid, denoted by Ck,

• the interest paid, denoted by Ik.

If we consider a borrowed principal S, taken from a bank a time t = 0, and a sequence of

payment amounts Rk which must be paid every unit period t = 1, 2, 3, . . . , n − 1, n, we can

represent the financial operation through the following cash-flow.

0

S

1

−R1

2

−R2

3

−R3

· · · · · · n− 1

−Rn−1

n

−Rn

If we put v = 1/(1 + i), the financial equivalence is given by the equality

S = R1v +R2v
2 +R3v

3 + · · ·+Rn−1v
n−1 +Rnv

n =
n
∑

h=1

Rhv
h. (3)

For every time t ≡ k = 1, 2, 3, . . . , n − 1, n, we now define the remaining principal, or

remaining debt, denoted by Dk, of the amortization as

Dk =
1

vk

(

S −

k
∑

h=1

Rhv
h

)

, (4)
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that, by substitution of (3), assumes the form

Dk =
1

vk

(

S −

k
∑

h=1

Rhv
h

)

=
1

vk

(

n
∑

h=1

Rhv
h
−

k
∑

h=1

Rhv
h

)

=
n
∑

h=k+1

Rhv
h−k,

from which we get the remaining debt Dk−1 at time t = k − 1

Dk−1 =
n
∑

h=k

Rhv
h−k+1. (5)

It is straightforward to notice that the remaining debt Dk, defined by (4) where S is given

by (3), is obviously decreasing and satisfies both accounting properties D0 = S and Dn = 0.

The significance and the interpretation of the definition (4) are straightforward: the

quantity Dk given by (4) effectively represents the remaining debt at time k because it is the

difference between the initial debt S and what one has already paid until time k, calculated

at time k through the multiplication by the accumulation factor 1/vk ≡ (1 + i)k.

Further, for every time t ≡ k = 1, 2, 3, . . . , n− 1, n, we define the principal paid, denoted

by Ck, of the amortization through the relation

k
∑

h=1

Ch = S −Dk , (6)

from which we get the accounting property corresponding to Dn = 0

n
∑

h=1

Ch = S −Dn = S, (7)

the remaining debt

Dk = S −

k
∑

h=1

Ch (8)

and then the difference between two consecutive remaining debts

Dk−1 −Dk =

(

S −

k−1
∑

h=1

Ch

)

−

(

S −

k
∑

h=1

Ch

)

=
k
∑

h=1

Ch −

k−1
∑

h=1

Ch = Ck . (9)

Finally, for every time t ≡ k = 1, 2, 3, . . . , n − 1, n, we define the interest paid, denoted

by Ik, as the difference

Ik = Rk − Ck , (10)

which satisfies Ik = iDk−1 because, by virtue of (5) and of (1− v)/v = i, it yields

Ik = Rk − Ck = Rk −Dk−1 +Dk = Rk −

n
∑

h=k

Rhv
h−k+1 +

n
∑

h=k+1

Rhv
h−k =
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= Rk −Rkv − v

n
∑

h=k+1

Rhv
h−k +

n
∑

h=k+1

Rhv
h−k = Rk(1− v) +

1− v

vk

n
∑

h=k+1

Rhv
h =

=
1− v

vk

(

Rkv
k +

n
∑

h=k+1

Rhv
h

)

=
1− v

vk

n
∑

h=k

Rhv
h =

1− v

v

n
∑

h=k

Rhv
h−k+1 = iDk−1 ,

that is

Ik = iDk−1 . (11)

In the case the problem data are the initial loan S and a condition about the payment

amounts Rk, then we perform the following steps according the following sequence:

• we determine the payment amounts Rk from equation (3);

• we determine the remaining debt Dk from equation (4);

• we determine the principal paid Ck from equation (6);

• we determine the interest paid Ik from equation (10).

In the case the problem data are the initial loan S and a condition about the principal

paid Ck, then we perform the following steps according the following sequence:

• we determine the principal paid Ck from the given conditions on the principal paid;

• we determine the remaining debt Dk from equation (8);

• we determine the payment amounts Rk from equation (4);

• we determine the interest paid Ik from equation (10).

2.1 French amortization

The french amortization of a borrowed principal (loan) is characterized by a constant payment

amount. If we consider a borrowed principal S, taken from a bank a time t = 0, and a constant

payment amount R which must be paid every unit period t = 1, 2, 3, . . . , n − 1, n, we can

represent the financial operation through the following cash-flow.

0

S

1

−R

2

−R

3

−R

· · · · · · n− 1

−R

n

−R
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If we put v = 1/(1 + i), the financial equivalence (3) assumes the form

S = Rv +Rv2 +Rv3 + · · ·+Rvn−1 +Rvn,

that is

S =
v(1− vn)

1− v
R,

from which the value of payment amount

R =
1− v

v(1− vn)
S (12)

follows, where we have used the formula of the sum

1 + v + v2 + v3 + · · ·+ vn−2 + vn−1 =
1− vn

1− v
. (13)

For every time t ≡ k = 1, 2, 3, . . . , n − 1, n, the remaining principal, or remaining debt,

denoted by Dk, of the amortization, defined by (4), takes the form

Dk =
1

vk

(

S −

k
∑

h=1

Rvh

)

, (14a)

whose expansion is

Dk =
1

vk

(

S −

k
∑

h=1

Rvh

)

=
S −Rv −Rv2 −Rv3 − · · · − Rvk

vk
=

=
S −Rv

(

1 + v + v2 + v3 + · · ·+ vk−2 + vk−1
)

vk
=

=
S

vk
−

Rv
(

1− vk
)

vk(1− v)
=

S

vk
−

[

1− v

v(1− vn)
S

]

v
(

1− vk
)

vk(1− v)
=

1− vn−k

1− vn
S,

that is

Dk =
1− vn−k

1− vn
S, (14b)

which satisfies both accounting properties D0 = S and Dn = 0.

Further, for every time t ≡ k = 1, 2, 3, . . . , n− 1, n, the principal paid, denoted by Ck, of

the amortization, defined by (6), allows to compute the expressions Ci, inductively.

For k = 1 we obtain

C1 = S −D1 = S −

1− vn−1

1− vn
S =

vn−1
− vn

1− vn
S,

that is

C1 =
vn−1

− vn

1− vn
S; (15a)
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for k = 2 we have C1 + C2 = S −D2, that is

C2 = S − C1 −D2 = S −

vn−1
− vn

1− vn
S −

1− vn−2

1− vn
S =

=

[

1− vn − vn−1 + vn − 1 + vn−2

1− vn

]

S =
vn−2

− vn−1

1− vn
S =

=
vn−1

− vn

v(1− vn)
S =

C1

v
= C1(1 + i);

for k = 3 we have C1 + C2 + C3 = S −D3, that is

C3 = S − C1 − C2 −D3 = S −

vn−1
− vn

1− vn
S −

vn−1
− vn

v(1− vn)
S −

1− vn−3

1− vn
S =

=

[

v − vn+1
− vn + vn+1

− vn−1 + vn − v + vn−2

v(1− vn)

]

S =

=
vn−2

− vn−1

v(1− vn)
S =

vn−1
− vn

v2(1− vn)
S =

C1

v2
= C1(1 + i)2,

from which, by induction, we get the expression of the principal paid

Ck =
vn−1

− vn

vk−1(1− vn)
S =

C1

vk−1
= C1(1 + i)k−1, (15b)

which satisfies both accounting properties (7) and (9) because it yields

n
∑

k=1

Ck = C1 + C2 + C3 + · · ·+ Cn−1 + Cn = C1 +
C1

v
+

C1

v2
+

C1

v3
+ · · ·+

C1

vn−2
+

C1

vn−1
=

=
C1

vn−1

(

1 + v + v2 + v3 + · · ·+ vn−2 + vn−1
)

=
C1

vn−1

1− vn

1− v
=

vn−1
− vn

vn−1(1− vn)
S
1− vn

1− v
= S,

that is
n
∑

k=1

Ck = S,

and

Dk−1−Dk =
1− vn−k+1

1− vn
S−

1− vn−k

1− vn
S =

vn−k
− vn−k+1

1− vn
S =

vn−1
− vn

vk−1(1− vn)
S =

C1

vk−1
= Ck ,

that is Dk−1−Dk = Ck. The expression (15b) shows that the principal paid Ck of the french

amortization increases from C1 in geometric progression.

Finally, for every time t ≡ k = 1, 2, 3, . . . , n−1, n, the interest paid, denoted by Ik, defined

by (10), is given by

Ik = R− Ck , (16)
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whose expansion is

Ik = R− Ck =
1− v

v(1− vn)
S −

vn−1
− vn

vk−1(1− vn)
S =

vk−2
− vk−1

− vn−1 + vn

vk−1(1− vn)
S,

and it is straightforward to notice that the relation Ik = iDk−1 in (11) holds because we have

iDk−1 =

(

1

v
− 1

)

Dk−1 =

(

1

v
− 1

)

1− vn−k+1

1− vn
S =

(1− v)(1− vn−k+1)

v(1− vn)
S =

=
vk−2(1− v)(1− vn−k+1)

vk−1(1− vn)
S =

vk−2
− vk−1

− vn−1 + vn

vk−1(1− vn)
S = Ik .

2.2 Italian amortization

The italian amortization of a loan S is characterized by the costant principal paid, denoted

by C, from which, by virtue of the property (7), we get C = S/n.

From the equation (6) defining the principal paid Ck, we get

Dk = S −

k
∑

h=1

Ck = S −

k
∑

h=1

C = S −

k
∑

h=1

S

n
= S −

kS

n
=

n− k

n
S,

that is

Dk =
n− k

n
S. (17)

From the equation (4), rewritten in the form

k
∑

h=1

Rhv
h = S − vkDk

and connecting the remaining debt Dk and the payment amount Rk, we can obtain Rk for

every time t ≡ k = 1, 2, 3, . . . , n− 1, n, inductively. For k = 1 we have

R1 =
S − vD1

v
=

S

v
−D1 =

S

v
−

n− 1

n
S =

(

1− v

v
+

1

n

)

S =

(

1

v
− 1 +

1

n

)

S;

for k = 2 we have

R2 =
S − v2D2 −R1v

v2
=

S

v2
−D2 −

R1

v
=

S

v2
−

n− 2

n
S −

(

1

v
− 1 +

1

n

)

S

v
=

=

(

1

v2
− 1 +

2

n
−

1

v2
+

1

v
−

1

nv

)

S =

(

1

v
− 1 +

1

n

)

S −

(

1

nv
−

1

n

)

S = R1 −

(

1

nv
−

1

n

)

S;
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for k = 3 we have

R3 =
S − v3D3 −R1v −R2v

2

v3
=

S

v3
−D3 −

R1

v2
−

R2

v
=

=

(

✁
✁
✁1

v3
−

n− 3

n
−

✁
✁
✁1

v3
+

✁
✁
✁1

v2
−

✓
✓
✓1

nv2
−

✁
✁
✁1

v2
+

1

v
−

1

nv
+

✓
✓
✓1

nv2
−

1

nv

)

S =

=

(

−

n− 3

n
+

1

v
−

2

nv

)

S =

(

1

v
− 1 +

1

n
−

2

nv
+

2

n

)

S =

=

(

1

v
− 1 +

1

n

)

S − 2

(

1

nv
−

1

n

)

S = R1 − 2

(

1

nv
−

1

n

)

S,

from which we inductively get the expressione at any time t = k

Rk = R1 − (k − 1)

(

1

nv
−

1

n

)

S. (18)

The expression (18) shows that the payment amount Rk of the italian amortization de-

creases from R1 in arithmetic progression. We can verify that the payment amount Rk of the

italian amortization satisfies the financial equivalence condition

n
∑

k=1

Rkv
k = S, (19)

for which we need the formula

n
∑

k=1

kvk = v
n
∑

k=1

kvk−1 = v
n
∑

k=1

d

dv
vk = v

d

dv

n
∑

k=1

vk = v
d

dv

(

v
1− vn

1− v

)

=

= v

[

1− vn

1− v
+ v

−nvn−1(1− v) + 1− vn

(1− v)2

]

=
v − vn+1

− nvn+1 + nvn+2

(1− v)2
,

that is
n
∑

k=1

kvk =
v − vn+1

− nvn+1 + nvn+2

(1− v)2
. (20)

By applying the formula (20) and the formula (13), we have

n
∑

k=1

Rkv
k =

[

R1 +

(

1

nv
−

1

n

)

S

] n
∑

k=1

vk −

(

1

nv
−

1

n

)

S
n
∑

k=1

kvk =

= S

[

(

1

v
− 1 +

✄
✄
✄1

n
+

1

nv
−

✄
✄
✄1

n

) n
∑

k=1

vk −

(

1

nv
−

1

n

) n
∑

k=1

kvk

]

=

= S

[(

1− v +
1

n

)

1− vn

1− v
−

(

1

nv
−

1

n

)

v − vn+1
− nvn+1 + nvn+2

(1− v)2

]

=
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= S

[(

n− nv + 1

n

)

1− vn

1− v
−

(

1− v

n

)

1− vn − nvn + nvn+1

(1− v)2

]

=

= S

[(

n− nv + 1

n

)

1− vn

1− v
−

1− vn − nvn + nvn+1

n(1− v)

]

=

=
(n− nv + 1)(1− vn)− 1 + vn + nvn − nvn+1

n(1− v)
S =

=
n−✟✟✟nvn − nv +✘✘✘✘nvn+1 + ✁1−✚✚vn − ✁1 +✚✚vn +✟✟✟nvn −✘✘✘✘nvn+1

n(1− v)
S =

n(1− v)

n(1− v)
S = S,

that is we have proved the equality (19).
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