MATHEMATICS FOR FINANCE Exam

Date

Surname

Name

ID Number

\qquad

Exercise 1. Given the canonical basis $\mathcal{B}_{\mathbb{R}^{3}}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ of the vector space \mathbb{R}^{3} and the linear application $L: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ acting on the basis vectors of \mathbb{R}^{3} according the transformation laws

$$
\left\{\begin{array}{l}
L\left(\boldsymbol{e}_{1}\right)=-14 \boldsymbol{e}_{1}-10 \boldsymbol{e}_{2}+6 \boldsymbol{e}_{3} \\
L\left(\boldsymbol{e}_{2}\right)=-6 \boldsymbol{e}_{1}-4 \boldsymbol{e}_{2}+2 \boldsymbol{e}_{3} \\
L\left(\boldsymbol{e}_{3}\right)=2 \boldsymbol{e}_{1}+2 \boldsymbol{e}_{2}-2 \boldsymbol{e}_{3}
\end{array}\right.
$$

1) write the matrix A associated to the linear application L with respect to the given basis;
2) find the subspaces kernel and image of the linear application L determining a basis for both subspaces.

Let us consider the linear application $\tilde{L}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ defined by the transformation laws of the components

$$
\tilde{L}(x, y, z)=(y,-y+z, x+z),
$$

where in the vector space \mathbb{R}^{3} the same basis $\mathcal{B}_{\mathbb{R}^{3}}$ as before is fixed.
3) Write the matrix B associated to the linear application \tilde{L} with respect to the given basis and determine the matrix, denoted by M, associated to the product of linear applications in the order $L \tilde{L}$.
4) Verify whether the matrix M is diagonalizable.

If M is diagonalizable,
5) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by \mathcal{D} and write the matrix C of the basis change such that $C^{-1} M C=\mathcal{D}$;
6) write the diagonal matrix \mathcal{D} (without performing the matrix multiplication $C^{-1} M C$);
7) in the eigenspace corresponding to the eigenvalue of algebraic multiplicity 2 , find an eingenvector orthogonal to the vector $\boldsymbol{v}=(1,4,-2)$.

Exercise 2. Solve the following Cauchy problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}(x)-2 y^{\prime}(x)+y(x)=2 e^{x}-6 x e^{x} \\
y(0)=-1 \\
y^{\prime}(0)=2
\end{array}\right.
$$

Exercise 3. Find the optimal points of the function

$$
f(x, y, z)=\frac{1}{3} x+\frac{1}{2} y+\frac{1}{2} z
$$

subject to the constraints $2 x y=1$ and $3 y z=2$.

Solution

Exercise 1.

1) The matrix A is

$$
A=\left(\begin{array}{ccc}
-14 & -6 & 2 \\
-10 & -4 & 2 \\
6 & 2 & -2
\end{array}\right)
$$

obtained by writing in columns the coefficients of

$$
-14 \boldsymbol{e}_{1}-10 \boldsymbol{e}_{2}+6 \boldsymbol{e}_{3}, \quad-6 \boldsymbol{e}_{1}-4 \boldsymbol{e}_{2}+2 \boldsymbol{e}_{3}, \quad 2 \boldsymbol{e}_{1}+2 \boldsymbol{e}_{2}-2 \boldsymbol{e}_{3}
$$

2) The kernel of L is the subspace of \mathbb{R}^{3} containing the vectors $\boldsymbol{v}=(x, y, z)$ such that it yields $L(\boldsymbol{v})=\mathbf{0}$, that is

$$
\left(\begin{array}{ccc}
-14 & -6 & 2 \\
-10 & -4 & 2 \\
6 & 2 & -2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

which is an algebraic linear system having rank 2, because

$$
\operatorname{det}\left(\begin{array}{ccc}
-14 & -6 & 2 \\
-10 & -4 & 2 \\
6 & 2 & -2
\end{array}\right)=0
$$

and the minor of order 2

$$
\left(\begin{array}{cc}
-4 & 2 \\
2 & -2
\end{array}\right)
$$

highlighted in the matrix A

$$
A=\left(\begin{array}{ccc}
-14 & -6 & 2 \\
-10 & -4 & 2 \\
6 & 2 & -2
\end{array}\right)
$$

has determinant not equal to zero. From this minor we get the system

$$
\left\{\begin{array}{l}
-4 y+2 z=10 t \\
2 y-2 z=-6 t
\end{array}\right.
$$

in which we have given the arbitrary value $x=t$ to the unknown x, that lays outside the minor highlighted in the matrix A. The kernel has then dimension 1 because this linear system has ∞^{1} solutions which are

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right) t,
$$

from which we get that the kernel has basis vector $(1,-2,1)$. The image of L is spanned by all those column vectors having some component contained inside the minor highlighted in the matrix A, that is we have the basis of the image

$$
\mathcal{B}_{I m(L)}=\left\{\left(\begin{array}{c}
-3 \\
-2 \\
1
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)\right\}
$$

where the second and third column of A have been divided by 2 .
3) The matrix B associated to the linear application $\tilde{L}(x, y, z)=(y,-y+z, x+z)$ is the matrix

$$
B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

because it reproduces the transformation laws of $\tilde{\mathcal{L}}$, that is

$$
\tilde{\mathcal{L}}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
y \\
-y+z \\
x+y
\end{array}\right) .
$$

From the matrix B, one gets the matrix M associated to the product of linear applications in the order $L \tilde{L}$

$$
M=A B=\left(\begin{array}{ccc}
-14 & -6 & 2 \\
-10 & -4 & 2 \\
6 & 2 & -2
\end{array}\right)\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2 & -8 & -4 \\
2 & -6 & -2 \\
-2 & 4 & 0
\end{array}\right)
$$

4,5) In order to verify whether the matrix M, which is an endomorphism of \mathbb{R}^{3}, is diagonalizable, we have to extablish whether there exists a basis of the vector space \mathbb{R}^{3} consisting of three eigenvectors of M, that is we have to verify, in other words, whether there exist three linearly independent eigenvectors of M.

The characteristic polynomial of M is

$$
\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & -8 & -4 \\
2 & -6-\lambda & -2 \\
-2 & 4 & -\lambda
\end{array}\right)=-\lambda\left(\lambda^{2}+4 \lambda+4\right)
$$

whose zeros are the simple eigenvalue $\lambda=0$ and the eigenvalue $\lambda=-2$, having algebraic multiplicity 2 .
To the simple eigenvalue $\lambda=0$, we associate the linear system $(M-0 \mathbb{I}) \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{ccc}
2 & -8 & -4 \\
2 & -6 & -2 \\
-2 & 4 & 0
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

whose ∞^{1} solutions, by virtue of the minor of order 2

$$
\left(\begin{array}{ccc}
2 & -8 & -4 \\
2 & -6 & -2 \\
-2 & 4 & 0 \\
\hline
\end{array}\right)
$$

are $x=t, y=t, z=t$, from which we get the eigenvector $\boldsymbol{u}=(2,1,-1)$, satisfying effectively the equality

$$
\left(\begin{array}{ccc}
2 & -8 & -4 \\
2 & -6 & -2 \\
-2 & 4 & 0
\end{array}\right)\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right)=0\left(\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right), \quad \text { that is } \quad M \boldsymbol{u}=0 \boldsymbol{u}
$$

To the eigenvalue $\lambda=-2$, we associate the linear system $[M-(-2) \mathbb{I}] \boldsymbol{w}=\mathbf{0}$, that is

$$
\left(\begin{array}{ccc}
4 & -8 & -4 \\
2 & -4 & -2 \\
-2 & 4 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

whose ∞^{2} solutions, by virtue of the minor of order 1

$$
\left(\begin{array}{ccc}
\begin{array}{|cc|}
4 & -8 \\
\hline
\end{array} & -4 \\
2 & -4 & -2 \\
-2 & 4 & 2
\end{array}\right)
$$

[^0]are
\[

\left($$
\begin{array}{l}
x \tag{1}\\
y \\
z
\end{array}
$$\right)=\left($$
\begin{array}{l}
2 \\
1 \\
0
\end{array}
$$\right) \alpha+\left($$
\begin{array}{l}
1 \\
0 \\
1
\end{array}
$$\right) \beta
\]

from which we get the two eigenvectors $\boldsymbol{w}_{1}=(2,1,0)$ and $\boldsymbol{w}_{2}=(1,0,1)$, satisfying the equalities

$$
\left(\begin{array}{ccc}
2 & -8 & -4 \\
2 & -6 & -2 \\
-2 & 4 & 0
\end{array}\right)\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=-2\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right), \quad \text { and } \quad\left(\begin{array}{ccc}
2 & -8 & -4 \\
2 & -6 & -2 \\
-2 & 4 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)=-2\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)
$$

that is $M \boldsymbol{w}_{1}=-2 \boldsymbol{w}_{1}$ and $M \boldsymbol{w}_{2}=-2 \boldsymbol{w}_{2}$.
Since the set $\mathcal{B}=\left\{\boldsymbol{u}, \boldsymbol{w}_{1}, \boldsymbol{w}_{2}\right\}$, containing three eigenvectors of the matrix M, is linearly independent, we conclude that the set \mathcal{B} is a basis of the vector space \mathbb{R}^{3}, and then that the matrix M is diagonalizable.

The matrix C of the basis change to the basis of the eigenvectors, with respect to which M assumes diagonal form, is then the one whose columns are the eigenvectors, that is

$$
C=\left(\begin{array}{ccc}
2 & 2 & 1 \\
1 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right)
$$

6) Since we have written the eigenvectors in the matrix C in the sequence corresponding to the eigenvalues in the order $\lambda=0,-2,-2$, respectively, it follows that the diagonal matrix \mathcal{D}, associated to M, is

$$
\mathcal{D}=C^{-1} M C=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

7) The eigenspace associated to the eigenvalue of algebraic multiplicity 2 is the one corresponding to $\lambda=-2$, spanned by the two eigenvectors $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}$, that we denote by \mathbb{E}_{-2}. The vectors of this subspace have the form (1), and the vector of this subspace, orthogonal to the given vector \boldsymbol{v}, is the vector $\boldsymbol{w}=(2 \alpha+\beta, \alpha, \beta)$ such that the scalar product $(\boldsymbol{v}, \boldsymbol{w})$ vanishes, that is

$$
(\boldsymbol{v}, \boldsymbol{w})=(1,4,-2) \cdot(2 \alpha+\beta, \alpha, \beta)=0,
$$

from which we get the relation $6 \alpha-\beta=0$. By choosing the particular solution given by $\alpha=1, \beta=6$, we finally obtain the particular vector $\boldsymbol{w}=(8,1,6)$ belonging to \mathbb{E}_{-2} and orthogonal to the given vector $\boldsymbol{v}=(1,4,-2)$.

Exercise 2.

The homogeneous equation associated to the given equation is

$$
y^{\prime \prime}(x)-2 y^{\prime}(x)+y(x)=0
$$

to which the algebraic equation

$$
\lambda^{2}-2 \lambda+1=0
$$

corresponds, having the solution $\lambda=1$ with algebraic multiplicity 2 . The solution, that we denote by $y_{0}(x)$, of the homogeneous equation is then

$$
y_{0}(x)=A e^{x}+B x e^{x},
$$

and since the right-hand side of the given equation is $(2-6 x) e^{x}$, that is the product of a polynomial of first degree times the exponential e^{x}, we write the particular solution $y_{p}(x)$ in the same form

$$
y_{p}(x)=(a x+b) e^{x} .
$$

Since this $y_{p}(x)$ is similar to the solution of the homogeneous equation, we multiply $y_{p}(x)$ times x, and we obtain the new particular solution

$$
y_{p}(x)=\left(a x^{2}+b x\right) e^{x}
$$

whose term $b x e^{x}$ is similar to $B x e^{x}$ of the solution of the homogeneous equation. We have then to multiply for another factor x in such a way that the particular solution $y_{p}(x)$ assumes the final form

$$
y_{p}(x)=\left(a x^{3}+b x^{2}\right) e^{x}
$$

whose derivatives are

$$
y_{p}^{\prime}(x)=\left(3 a x^{2}+2 b x+a x^{3}+b x^{2}\right) e^{x} \quad \text { and } \quad y_{p}^{\prime \prime}(x)=\left(6 a x+2 b+6 a x^{2}+4 b x+a x^{3}+b x^{2}\right) e^{x} .
$$

By inserting $y_{p}(x), y_{p}^{\prime}(x), y_{p}^{\prime \prime}(x)$ into the given equation, we get the equality

$$
\left(6 a x+2 b+6 a x^{2}+4 b x+a x^{3}+b x^{2}\right) e^{x}-2\left(3 a x^{2}+2 b x+a x^{3}+b x^{2}\right) e^{x}+\left(a x^{3}+b x^{2}\right) e^{x}=(2-6 x) e^{x},
$$ that, after the semplifications

$$
\left(6 a x+2 b+6 a x^{2}+4 b x+a x^{3}+b x^{2}\right) e^{x}-2\left(3 a x^{2}+2 b x+a x^{y}+b x^{2}\right) e^{x}+\left(a x^{3}+b x^{2}\right) e^{x}=(2-6 x) e^{x},
$$ becomes

$$
(6 a x+2 b) e^{x}=(2-6 x) e^{x}
$$

from which we obtain the two equations $6 a=-6,2 b=2$, and then $a=-1, b=1$.
The solution of the given differential equation is then

$$
y(x)=A e^{x}+B x e^{x}-x^{3} e^{x}+x^{2} e^{x}
$$

whose first derivative is

$$
y^{\prime}(x)=A e^{x}+B e^{x}+B x e^{x}-3 x^{2} e^{x}-x^{3} e^{x}+2 x e^{x}+x^{2} e^{x},
$$

from which, by imposing the initial conditions $y(0)=-1, y^{\prime}(0)=2$ of the Cauchy problem, the system

$$
\left\{\begin{array}{ccc}
A & = & -1 \\
A+B & = & 2
\end{array}\right.
$$

follows, having solution $A=-1, B=3$. The solution of the given Cauchy problem is then

$$
y(x)=-e^{x}+3 x e^{x}-x^{3} e^{x}+x^{2} e^{x} .
$$

Exercise 3. The Lagrangian function \mathcal{L} associated to the given optimization problem is

$$
\mathcal{L}(e, y, z ; \lambda, \mu)=\frac{1}{3} x+\frac{1}{2} y+\frac{1}{2} z+\lambda(2 x y-1)+\mu(3 y z-2),
$$

from which the first order conditions

$$
\left\{\begin{array}{l}
1 / 3+2 \lambda y=0 \\
1 / 2+2 \lambda x+3 \mu z=0 \\
1 / 2+3 \mu y=0 \\
2 x y=1 \\
3 y z=2
\end{array}\right.
$$

From the first, third, fourth, fifth equation, we get

$$
\lambda=-1 /(6 y), \quad \mu=-1 /(6 y), \quad x=1 /(2 y), \quad z=2 /(3 y),
$$

respectively, that, inserted into the second equation, give

$$
\frac{1}{2}+2\left(-\frac{1}{6 y}\right)\left(\frac{1}{2 y}\right)+3\left(-\frac{1}{6 y}\right)\left(\frac{2}{3 y}\right)=0 \quad \Longrightarrow \quad \frac{y^{2}-1}{2 y^{2}}=0
$$

where $y \neq 0$ because $y=0$ is not consistent with the constraints. From $y^{2}-1=0$, we get $y= \pm 1$ and then the optimal points

$$
A=\left(\frac{1}{2}, 1, \frac{2}{3} ;-\frac{1}{6},-\frac{1}{6}\right) \quad \text { and } \quad B=\left(-\frac{1}{2},-1,-\frac{2}{3} ; \frac{1}{6}, \frac{1}{6}\right) .
$$

The bordered hessian matrix is

$$
\bar{H}(x, y, z ; \lambda, \mu)=\left(\begin{array}{ccccc}
0 & 0 & 2 y & 2 x & 0 \\
0 & 0 & 0 & 3 z & 3 y \\
2 y & 0 & 0 & 2 \lambda & 0 \\
2 x & 3 z & 2 \lambda & 0 & 3 \mu \\
0 & 3 y & 0 & 3 \mu & 0
\end{array}\right)
$$

from which we get

$$
\bar{H}(A)=\left(\begin{array}{ccccc}
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2 & 3 \\
2 & 0 & 0 & -1 / 3 & 0 \\
1 & 2 & -1 / 3 & 0 & -1 / 2 \\
0 & 3 & 0 & -1 / 2 & 0
\end{array}\right) \quad \text { and } \quad \bar{H}(B)=\left(\begin{array}{ccccc}
0 & 0 & -2 & -1 & 0 \\
0 & 0 & 0 & -2 & -3 \\
-2 & 0 & 0 & 1 / 3 & 0 \\
-1 & -2 & 1 / 3 & 0 & 1 / 2 \\
0 & -3 & 0 & 1 / 2 & 0
\end{array}\right)
$$

From

$$
\begin{aligned}
& \operatorname{det} \bar{H}(A)=2 \operatorname{det}\left(\begin{array}{cccc}
0 & 0 & 2 & 3 \\
2 & 0 & -1 / 3 & 0 \\
1 & 2 & 0 & -1 / 2 \\
0 & 3 & -1 / 2 & 0
\end{array}\right)-\operatorname{det}\left(\begin{array}{cccc}
0 & 0 & 0 & 3 \\
2 & 0 & 0 & 0 \\
1 & 2 & -1 / 3 & -1 / 2 \\
0 & 3 & 0 & 0
\end{array}\right)= \\
= & 2(2) \operatorname{det}\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 / 2 \\
0 & 3 & 0
\end{array}\right)-2(3) \operatorname{det}\left(\begin{array}{ccc}
2 & 0 & -1 / 3 \\
1 & 2 & 0 \\
0 & 3 & -1 / 2
\end{array}\right)+3 \operatorname{det}\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & 2 & -1 / 3 \\
0 & 3 & 0
\end{array}\right)= \\
= & 2(2)(2) \operatorname{det}\left(\begin{array}{cc}
2 & -1 / 2 \\
3 & 0
\end{array}\right)-2(3)(2) \operatorname{det}\left(\begin{array}{cc}
2 & 0 \\
3 & -1 / 2
\end{array}\right)-2(3)\left(-\frac{1}{3}\right) \operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right)+ \\
+ & 3(2) \operatorname{det}\left(\begin{array}{cc}
2 & -1 / 3 \\
3 & 0
\end{array}\right)=8\left(\frac{3}{2}\right)-2(3)(2)(-1)-2(3)\left(-\frac{1}{3}\right)(3)+3(2)(1)=36>0,
\end{aligned}
$$

we obtain that the point A is the minimum point.
Since the bordered hessian matrix $\bar{H}(B)$ is of odd order (order 5) and has the opposite sign of $\bar{H}(A)$, we can conclude that the determinant of $\bar{H}(B)$ has the opposite sign of $\bar{H}(A)$, because for every change of sign in a row or in a column, the determinant changes the sign, and there are five sign changes. Anyway, it could be an useful exercise to expand also the calculation of $\operatorname{det} \bar{H}(B)=-36<0$, that is left to the reader, from which we obtain that the point B is the maximum point.

[^0]: ${ }^{1}$ An eigenvalue λ of a matrix is called simple eigenvalue if its algebraic multiplicity is 1 .

