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Exercise 1. Given the canonical basis BR3 = {e1, e2, e3} of the vector space R
3 and the linear application

L : R3 −→ R
3 acting on the basis vectors of R3 according the transformation laws







L(e1) = 7e1 + 10e2 + 9e3

L(e2) = 3e1 + 2e2 + e3

L(e3) = −13e1 − 14e2 − 11e3

1) write the matrix A associated to the linear application L with respect to the given basis;

2) find the subspaces kernel and image of the linear application L determining a basis for both subspaces.

Let us consider the linear application L̃ : R3 −→ R
3 defined by the transformation laws of the components

L̃(x, y, z) = (2x− y/2− z, x+ y − z, 2x− y),

where in the vector space R
3 the same basis BR3 as before is fixed.

3) Write the matrix B associated to the linear application L̃ with respect to the given basis and determine the

matrix, denoted by M , associated to the product of linear applications in the order L̃L.

4) Verify whether the matrix M is diagonalizable.

If M is diagonalizable,

5) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by D and write

the matrix C of the basis change such that C−1MC = D;

6) write the diagonal matrix D (without performing the matrix multiplication C−1MC);

7) in the eigenspace corresponding to the eigenvalue of algebraic multiplicity 2, find an eingenvector orthogo-

nal to the vector v = (5,−1,−2).

Exercise 2. Solve the following Cauchy problem







9y′′(x) + 6y′(x) + y(x) = −3e−x/3 + 2xe−x/3

y(0) = 1
y′(0) = −1

Exercise 3. Find the optimal points of the function

f(x, y, z) = 2x+
1

2
y −

8

3
z

subject to the constraints 3xy = 2 and 4yz = −1.



Solution

Exercise 1.

1) The matrix A is

A =

Ñ

7 3 −13

10 2 −14

9 1 −11

é

,

obtained by writing in columns the coefficients of

7e1 + 10e2 + 9e3, 3e1 + 2e2 + e3, −13e1 − 14e2 − 11e3.

2) The kernel of L is the subspace of R3 containing the vectors v = (x, y, z) such that it yields L(v) = 0, that

is
Ñ

7 3 −13

10 2 −14

9 1 −11

éÑ

x
y

z

é

=

Ñ

0

0

0

é

,

which is an algebraic linear system having rank 2, because

det

Ñ

7 3 −13

10 2 −14

9 1 −11

é

= 0,

and the minor of order 2
Å

10 2

9 1

ã

,

highlighted in the matrix A

A =

Ñ

7 3 −13

10 2 −14
9 1 −11

é

,

has determinant not equal to zero. From this minor we get the system

ß

10x+ 2y = 14t
9x+ y = 11t,

in which we have given the arbitrary value z = t to the unknown z, that lays outside the minor highlighted in the

matrix A. The kernel has then dimension 1 because this linear system has ∞1 solutions which are

Ñ

x
y

z

é

=

Ñ

1

2

1

é

t,

from which we get that the kernel has basis vector (1, 2, 1). The image of L is spanned by all those column vectors

having some component contained inside the minor highlighted in the matrix A, that is we have the basis of the

image

BIm(L) =







Ñ

7

10

9

é

,

Ñ

3

2

1

é





,

that is the first and second column of A.

3) The matrix B associated to the linear application L̃(x, y, z) = (2x − y/2 − z, x + y − z, 2x − y) is the

matrix

B =

Ö

2 −1/2 −1

1 1 −1

2 −1 0

è

,
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because it reproduces the transformation laws of L̃, that is

L̃

Ñ

x
y

z

é

=

Ö

2 −1/2 −1

1 1 −1

2 −1 0

è

Ñ

x
y

z

é

=

Ö

2x− y/2− z

x+ y − z

2x− y

è

.

From the matrix B, one gets the matrix M associated to the product of linear applications in the order L̃L

M = BA =

Ö

2 −1/2 −1

1 1 −1

2 −1 0

è

Ñ

7 3 −13

10 2 −14

9 1 −11

é

=

Ñ

0 4 −8

8 4 −16

4 4 −12

é

.

4,5) In order to verify whether the matrix M , which is an endomorphism of R3, is diagonalizable, we have

to extablish whether there exists a basis of the vector space R
3 consisting of three eigenvectors of M , that is we

have to verify, in other words, whether there exist three linearly independent eigenvectors of M .

The characteristic polynomial of M is

det

Ñ

−λ 4 −8

8 4− λ −16

4 4 −12− λ

é

= −λ[(λ+ 12)(λ− 4) + 64]− 4[64− 8(λ+ 12)]− 8[32− 4(4− λ)] =

= −λ
(

λ2 + 8λ+ 16
)

+ 4(8λ+ 32)− 8(4λ+ 16) = −λ(λ2 + 8λ+ 16) = −λ(λ+ 4)2,

whose zeros are the simple1 eigenvalue λ = 0 and the eigenvalue λ = −4, having algebraic multiplicity 2.

To the simple eigenvalue λ = 0 we associate the linear system (M − 0I)u = 0, that is

Ñ

0 4 −8

8 4 −16

4 4 −12

éÑ

x
y

z

é

=

Ñ

0

0

0

é

,

whose ∞1 solutions, by virtue of the minor of order 2

Ñ

0 4 −8
8 4 −16

4 4 −12

é

,

are x = t, y = 2t, z = t, from which we get the eigenvector u = (1, 2, 1), satisfying effectively the equality

Ñ

0 4 −8

8 4 −16

4 4 −12

éÑ

1

2

1

é

= 0

Ñ

1

2

1

é

, that is Mu = 0u.

To the eigenvalue λ = −4, we associate the linear system [M − (−4)I]w = 0, that is

Ñ

4 4 −8

8 8 −16

4 4 −8

éÑ

x
y

z

é

=

Ñ

0

0

0

é

,

whose ∞2 solutions, by virtue of the minor of order 1

4 4 −8

8 8 −16

4 4 −8

Ö è

1An eigenvalue λ of a matrix is called simple eigenvalue if its algebraic multiplicity is 1.
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are
Ñ

x
y

z

é

=

Ñ

−1

1

0

é

α +

Ñ

2

0

1

é

β, (1)

from which we get the two eigenvectors w1 = (−1, 1, 0) and w2 = (2, 0, 1), satisfying the equalities

Ñ

0 4 −8

8 4 −16

4 4 −12

éÑ

−1

1

0

é

= −4

Ñ

−1

1

0

é

, and

Ñ

0 4 −8

8 4 −16

4 4 −12

éÑ

2

0

1

é

= −4

Ñ

2

0

1

é

,

that is Mw1 = −4w1 and Mw2 = −4w2.

Since the set B = {u,w1,w2}, containing three eigenvectors of the matrix M , is linearly independent, we

conclude that the set B is a basis of the vector space R
3, and then that the matrix M is diagonalizable.

The matrix C of the basis change to the basis of the eigenvectors, with respect to which M assumes diagonal

form, is then the one whose columns are the eigenvectors, that is

C =

Ñ

1 −1 2

2 1 0

1 0 1

é

.

6) Since we have written the eigenvectors in the matrix C in the sequence corresponding to the eigenvalues in

the order λ = 0,−2,−2, respectively, it follows that the diagonal matrix D, associated to M , is

D = C−1MC =

Ñ

0 0 0

0 −4 0

0 0 −4

é

.

7) The eigenspace associated to the eigenvalue of algebraic multiplicity 2 is the one corresponding to λ = −4,

spanned by the two eigenvectors w1,w2, that we denote by E−4. The vectors of this subspace have the form (1),

and the vector of this subspace, orthogonal to the given vector v, is the vector w = (−α+2β, α, β) such that the

scalar product (v,w) vanishes, that is

(v,w) = (5,−1,−2) · (−α + 2β, α, β) = 0,

from which we get the relation 3α−4β = 0. By choosing the particular solution given by α = 4, β = 3, we finally

obtain the particular vector w = (2, 4, 3) belonging to E−4 and orthogonal to the given vector v = (5,−1,−2).

Exercise 2.

The homogeneous equation associated to the given equation is

9y′′(x) + 6y′(x) + y(x) = 0,

to which the algebraic equation

9λ2 + 6λ+ 1 = 0

corresponds, having the solution λ = −1/3 with algebraic multiplicity 2. The solution, that we denote by y0(x),
of the homogeneous equation is then

y0(x) = Ae−x/3 + Bxe−x/3,

and since the right-hand side of the given equation is (2x − 3)e−x/3, that is the product of a polynomial of first

degree times the exponential e−x/3, we write the particular solution yp(x) in the same form

yp(x) = (ax+ b)e−x/3.
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Since this yp(x) is similar to the solution of the homogeneous equation, we multiply yp(x) times x, and we

obtain the new particular solution

yp(x) = (ax2 + bx)e−x/3,

whose term bxe−x/3 is similar to Bxe−x/3 of the solution of the homogeneous equation. We have then to multiply

for another factor x in such a way that the particular solution yp(x) assumes the final form

yp(x) = (ax3 + bx2)e−x/3,

whose derivatives are

y′p(x) =

Å

−
a

3
x3 + 3ax2 −

b

3
x2 + 2bx

ã

e−x/3,

y′′p(x) =

Å

a

9
x3 − 2ax2 +

b

9
x2 + 6ax−

4

3
bx+ 2b

ã

e−x/3.

By inserting yp(x), y
′

p(x), y
′′

p(x) into the given equation, we get the equality

9

Å

a

9
x3 − 2ax2 +

b

9
x2 + 6ax−

4

3
bx+ 2b

ã

e−x/3 +

+6

Å

−
a

3
x3 + 3ax2 −

b

3
x2 + 2bx

ã

e−x/3 + (ax3 + bx2)e−x/3 = (2x− 3)e−x/3,

that, after the semplifications

Ä

✟
✟ax3 −✘✘✘✘

18ax2 +✚
✚bx2 + 54ax−✘✘✘12bx+ 18b

ä

e−x/3 +

+
Ä

−✟
✟✟2ax3 +✘✘✘✘

18ax2 −✟
✟✟2bx2 +✘✘✘12bx

ä

e−x/3 + (✟✟ax3 +✚
✚bx2)e−x/3 = (2x− 3)e−x/3,

becomes

(54ax+ 18b)e−x/3 = (2x− 3)e−x/3,

from which we obtain the two equations 54a = 2, 18b = −3, and then a = 1/27, b = −1/6.

The solution of the given differential equation is then

y(x) = Ae−x/3 + Bxe−x/3 +
1

27
x3e−x/3 −

1

6
x2e−x/3,

whose first derivative is

y′(x) = −
A

3
e−x/3 + Be−x/3 −

B

3
xe−x/3 +

1

9
x2ex −

1

81
x3e−x/3 −

1

3
xe−x/3 +

1

18
x2ex,

from which, by imposing the initial conditions y(0) = 1, y′(0) = −1 of the Cauchy problem, the system

ß

A = 1
−A/3 + B = −1

follows, having solution A = 1, B = −2/3. The solution of the given Cauchy problem is then

y(x) = e−x/3 −
2

3
xe−x/3 +

1

27
x3e−x/3 −

1

6
x2e−x/3.

Exercise 3. The Lagrangian function L associated to the given optimization problem is

L(e, y, z;λ, µ) = 2x+
1

2
y −

8

3
z + λ(3xy − 2) + µ(4yz + 1),

5



from which the first order conditions






















2 + 3λy = 0
1/2 + 3λx+ 4µz = 0
−8/3 + 4µy = 0
3xy = 2
4yz = −1.

From the first, third, fourth, fifth equation, we get

λ = −2/(3y), µ = 2/(3y), x = 2/(3y), z = −1/(4y),

respectively, that, inserted into the second equation, give

1

2
+ 3

Å

−
2

3y

ãÅ

2

3y

ã

+ 4

Å

2

3y

ãÅ

−
1

4y

ã

= 0 =⇒
y2 − 4

2y2
= 0,

where y 6= 0 because y = 0 is not consistent with the constraints. From y2 − 4 = 0, we get y = ±2 and then the

optimal points

A =

Å

1

3
, 2,−

1

8
;−

1

3
,
1

3

ã

and B =

Å

−
1

3
,−2,

1

8
;
1

3
,−

1

3

ã

.

The bordered hessian matrix is

H(x, y, z;λ, µ) =

â

0 0 3y 3x 0

0 0 0 4z 4y

3y 0 0 3λ 0

3x 4z 3λ 0 4µ

0 4y 0 4µ 0

ì

,

from which we get

H(A) =

â

0 0 6 1 0

0 0 0 −1/2 8

6 0 0 −1 0

1 −1/2 −1 0 4/3

0 8 0 4/3 0

ì

and H(B) =

â

0 0 −6 −1 0

0 0 0 1/2 −8

−6 0 0 1 0

−1 1/2 1 0 −4/3

0 −8 0 −4/3 0

ì

.

From

detH(A) = 6 det

á

0 0 −1/2 8

6 0 −1 0

1 −1/2 0 4/3

0 8 4/3 0

ë

− det

á

0 0 0 8

6 0 0 0

1 −1/2 −1 4/3

0 8 0 0

ë

=

= 6

Å

−
1

2

ã

det

Ö

6 0 0

1 −1/2 4/3

0 8 0

è

− 6(8) det

Ö

6 0 −1

1 −1/2 0

0 8 4/3

è

+ 8det

Ö

6 0 0

1 −1/2 −1

0 8 0

è

=

= 6

Å

−
1

2

ã

(6) det

Ç

−1/2 4/3

8 0

å

− 6(8)(6) det

(

−1/2 0

8 4/3

)

+ 6(8) det

Ç

1 −1/2

0 8

å

+

+8(6) det

Ç

−1/2 −1

8 0

å

= −18

Å

−
32

2

ã

− 6(8)(6)(−2/3) + 6(8)(8) + 8(6)(8) = 1248 > 0,

we obtain that the point A is the minimum point.
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Since the bordered hessian matrix H(B) is of odd order (order 5) and has the opposite sign of H(A), we can

conclude that the determinant of H(B) has the opposite sign of H(A), because for every change of sign in a row

or in a column, the determinant changes the sign, and there are five sign changes. Anyway, it could be an useful

exercise to expand also the calculation of detH(B) = −1248 < 0, that is left to you, from which we obtain that

the point B is the maximum point.
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