
A First Course in Optimization teaches the basics of continuous optimiza-
tion and helps readers better understand the mathematics from previous
courses. It gives readers the proper groundwork for future studies in opti-
mization.

The book focuses on general problems and the underlying theory. It
introduces all the necessary mathematical tools and results. The text covers
the fundamental problems of constrained and unconstrained optimization
as well as linear and convex programming. It also presents basic iterative
solution algorithms (such as gradient methods and the Newton–Raphson
algorithm and its variants) and more general iterative optimization methods.

Features
• Explains how to find exact and approximate solutions to systems of

linear equations
• Shows how to use linear programming techniques, iterative methods,

and specialized algorithms in various applications
• Discusses the importance of speeding up convergence
• Presents the necessary mathematical tools and results to provide the

proper foundation
• Prepares readers to understand how iterative optimization methods are

used in inverse problems

This text builds the foundation to understand continuous optimization. It
prepares readers to study advanced topics found in the author’s companion
book, Iterative Optimization in Inverse Problems, including sequential un-
constrained iterative optimization methods.

K22492

Mathematics

A First Course
in

Optimization
A

 First C
ourse in O

ptim
ization

Charles L. Byrne

B
yrne

K22492_cover.indd 1 6/25/14 4:30 PM

A First Course in
Optimization

This page intentionally left blankThis page intentionally left blank

A First Course in
Optimization

Charles L. Byrne
University of Massachusetts Lowell

Lowell, USA

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140703

International Standard Book Number-13: 978-1-4822-2658-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted,
or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, includ-
ing photocopying, microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com
(http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers,
MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety
of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment
has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To my wife Eileen,
with thanks for forty-four wonderful years of

marriage.

This page intentionally left blankThis page intentionally left blank

Contents

Preface xvii

Overview xxi

1 Optimization Without Calculus 1

1.1 Chapter Summary . 1
1.2 The Arithmetic Mean-Geometric Mean Inequality 2
1.3 Applying the AGM Inequality: the Number e 2
1.4 Extending the AGM Inequality 3
1.5 Optimization Using the AGM Inequality 4

1.5.1 Example 1: Minimize This Sum 4
1.5.2 Example 2: Maximize This Product 4
1.5.3 Example 3: A Harder Problem? 4

1.6 The Hölder and Minkowski Inequalities 5
1.6.1 Hölder’s Inequality 5
1.6.2 Minkowski’s Inequality 6

1.7 Cauchy’s Inequality . 6
1.8 Optimizing Using Cauchy’s Inequality 8

1.8.1 Example 4: A Constrained Optimization 8
1.8.2 Example 5: A Basic Estimation Problem 9
1.8.3 Example 6: A Filtering Problem 10

1.9 An Inner Product for Square Matrices 11
1.10 Discrete Allocation Problems 13
1.11 Exercises . 15

2 Geometric Programming 19

2.1 Chapter Summary . 19
2.2 An Example of a GP Problem 19
2.3 Posynomials and the GP Problem 20
2.4 The Dual GP Problem 21
2.5 Solving the GP Problem 24
2.6 Solving the DGP Problem 24

2.6.1 The MART . 25

vii

viii Contents

2.6.2 MART I . 25
2.6.3 MART II . 26
2.6.4 Using the MART to Solve the DGP Problem . . 26

2.7 Constrained Geometric Programming 28
2.8 Exercises . 30

3 Basic Analysis 31

3.1 Chapter Summary . 31
3.2 Minima and Infima . 31
3.3 Limits . 32
3.4 Completeness . 34
3.5 Continuity . 36
3.6 Limsup and Liminf . 36
3.7 Another View . 38
3.8 Semi-Continuity . 39
3.9 Exercises . 39

4 Convex Sets 41

4.1 Chapter Summary . 41
4.2 The Geometry of Real Euclidean Space 42

4.2.1 Inner Products 42
4.2.2 Cauchy’s Inequality 43
4.2.3 Other Norms . 43

4.3 A Bit of Topology . 43
4.4 Convex Sets in RJ . 45

4.4.1 Basic Definitions 45
4.4.2 Orthogonal Projection onto Convex Sets 49

4.5 More on Projections . 52
4.6 Linear and Affine Operators on RJ 53
4.7 The Fundamental Theorems 54

4.7.1 Basic Definitions 54
4.7.2 The Separation Theorem 55
4.7.3 The Support Theorem 55

4.8 Block-Matrix Notation 57
4.9 Theorems of the Alternative 58
4.10 Another Proof of Farkas’ Lemma 62
4.11 Gordan’s Theorem Revisited 64
4.12 Exercises . 66

Contents ix

5 Vector Spaces and Matrices 71

5.1 Chapter Summary . 71
5.2 Vector Spaces . 71
5.3 Basic Linear Algebra . 74

5.3.1 Bases and Dimension 74
5.3.2 The Rank of a Matrix 75
5.3.3 The “Matrix Inversion Theorem” 77
5.3.4 Systems of Linear Equations 77
5.3.5 Real and Complex Systems of Linear Equations . 78

5.4 LU and QR Factorization 80
5.5 The LU Factorization . 80

5.5.1 A Shortcut . 81
5.5.2 A Warning! . 82
5.5.3 The QR Factorization and Least Squares 85

5.6 Exercises . 85

6 Linear Programming 87

6.1 Chapter Summary . 87
6.2 Primal and Dual Problems 88

6.2.1 An Example . 88
6.2.2 Canonical and Standard Forms 89
6.2.3 From Canonical to Standard and Back 89

6.3 Converting a Problem to PS Form 90
6.4 Duality Theorems . 91

6.4.1 Weak Duality . 91
6.4.2 Primal-Dual Methods 92
6.4.3 Strong Duality 92

6.5 A Basic Strong Duality Theorem 92
6.6 Another Proof . 94
6.7 Proof of Gale’s Strong Duality Theorem 97
6.8 Some Examples . 99

6.8.1 The Diet Problem 99
6.8.2 The Transport Problem 99

6.9 The Simplex Method . 100
6.10 Yet Another Proof . 102
6.11 The Sherman–Morrison–Woodbury Identity 102
6.12 An Example of the Simplex Method 103
6.13 Another Example . 106
6.14 Some Possible Difficulties 107

6.14.1 A Third Example 108
6.15 Topics for Projects . 109
6.16 Exercises . 109

x Contents

7 Matrix Games and Optimization 111

7.1 Chapter Summary . 111
7.2 Two-Person Zero-Sum Games 112
7.3 Deterministic Solutions 112

7.3.1 Optimal Pure Strategies 112
7.4 Randomized Solutions . 113

7.4.1 Optimal Randomized Strategies 114
7.4.2 An Exercise . 115
7.4.3 The Min-Max Theorem 116

7.5 Symmetric Games . 117
7.5.1 An Example of a Symmetric Game 118
7.5.2 Comments on the Proof of the Min-Max Theorem 118

7.6 Positive Games . 118
7.6.1 Some Exercises 119
7.6.2 Comments . 119

7.7 Example: The “Bluffing” Game 119
7.8 Learning the Game . 121

7.8.1 An Iterative Approach 122
7.8.2 An Exercise . 122

7.9 Non-Constant-Sum Games 123
7.9.1 The Prisoners’ Dilemma 123
7.9.2 Two Payoff Matrices Needed 123
7.9.3 An Example: Illegal Drugs in Sports 124

8 Differentiation 125

8.1 Chapter Summary . 125
8.2 Directional Derivative . 125

8.2.1 Definitions . 126
8.3 Partial Derivatives . 127
8.4 Some Examples . 127

8.4.1 Example 1 . 127
8.4.2 Example 2 . 127

8.5 Gâteaux Derivative . 128
8.6 Fréchet Derivative . 129

8.6.1 The Definition 129
8.6.2 Properties of the Fréchet Derivative 129

8.7 The Chain Rule . 129
8.8 Exercises . 130

Contents xi

9 Convex Functions 133

9.1 Chapter Summary . 133
9.2 Functions of a Single Real Variable 134

9.2.1 Fundamental Theorems 134
9.2.2 Proof of Rolle’s Theorem 135
9.2.3 Proof of the Mean Value Theorem 135
9.2.4 A Proof of the MVT for Integrals 135
9.2.5 Two Proofs of the EMVT 135
9.2.6 Lipschitz Continuity 136
9.2.7 The Convex Case 137

9.3 Functions of Several Real Variables 140
9.3.1 Continuity . 140
9.3.2 Differentiability 141
9.3.3 Second Differentiability 143
9.3.4 Finding Maxima and Minima 144
9.3.5 Solving F (x) = 0 through Optimization 144
9.3.6 When Is F (x) a Gradient? 144
9.3.7 Lower Semi-Continuity 146
9.3.8 The Convex Case 146

9.4 Sub-Differentials and Sub-Gradients 149
9.5 Sub-Gradients and Directional Derivatives 151

9.5.1 Some Definitions 151
9.5.2 Sub-Linearity . 152
9.5.3 Sub-Differentials and Directional Derivatives . . 154
9.5.4 An Example . 156

9.6 Functions and Operators 157
9.7 Convex Sets and Convex Functions 159
9.8 Exercises . 160

10 Convex Programming 163

10.1 Chapter Summary . 164
10.2 The Primal Problem . 164

10.2.1 The Perturbed Problem 164
10.2.2 The Sensitivity Vector and the Lagrangian 165

10.3 From Constrained to Unconstrained 166
10.4 Saddle Points . 167

10.4.1 The Primal and Dual Problems 167
10.4.2 The Main Theorem 168
10.4.3 A Duality Approach to Optimization 168

10.5 The Karush–Kuhn–Tucker Theorem 169
10.5.1 Sufficient Conditions 169
10.5.2 The KKT Theorem: Saddle-Point Form 169

xii Contents

10.5.3 The KKT Theorem: The Gradient Form 170
10.6 On Existence of Lagrange Multipliers 171
10.7 The Problem of Equality Constraints 172

10.7.1 The Problem . 172
10.7.2 The KKT Theorem for Mixed Constraints 172
10.7.3 The KKT Theorem for LP 173
10.7.4 The Lagrangian Fallacy 174

10.8 Two Examples . 174
10.8.1 A Linear Programming Problem 174
10.8.2 A Nonlinear Convex Programming Problem . . . 175

10.9 The Dual Problem . 177
10.9.1 When Is MP = MD? 177
10.9.2 The Primal-Dual Method 178
10.9.3 Using the KKT Theorem 178

10.10 Nonnegative Least-Squares Solutions 178
10.11 An Example in Image Reconstruction 179
10.12 Solving the Dual Problem 181

10.12.1 The Primal and Dual Problems 181
10.12.2 Hildreth’s Dual Algorithm 181

10.13 Minimum One-Norm Solutions 182
10.13.1 Reformulation as an LP Problem 183
10.13.2 Image Reconstruction 184

10.14 Exercises . 185

11 Iterative Optimization 187

11.1 Chapter Summary . 188
11.2 The Need for Iterative Methods 188
11.3 Optimizing Functions of a Single Real Variable 189
11.4 Iteration and Operators 189
11.5 The Newton–Raphson Approach 190

11.5.1 Functions of a Single Variable 191
11.5.2 Functions of Several Variables 191

11.6 Approximate Newton–Raphson Methods 192
11.6.1 Avoiding the Hessian Matrix 192
11.6.2 The BFGS Method 193
11.6.3 The Broyden Class 193
11.6.4 Avoiding the Gradient 194

11.7 Derivative-Free Methods 194
11.7.1 Multi-Directional Search Algorithms 194
11.7.2 The Nelder–Mead Algorithm 195
11.7.3 Comments on the Nelder–Mead Algorithm 195

11.8 Rates of Convergence . 196
11.8.1 Basic Definitions 196

Contents xiii

11.8.2 Illustrating Quadratic Convergence 196
11.8.3 Motivating the Newton–Raphson Method 196

11.9 Descent Methods . 197
11.10 Optimizing Functions of Several Real Variables 198
11.11 Projected Gradient-Descent Methods 199
11.12 Auxiliary-Function Methods 201
11.13 Feasible-Point Methods 203

11.13.1 The Projected Gradient Algorithm 204
11.13.2 Reduced Gradient Methods 204
11.13.3 The Reduced Newton–Raphson Method 205
11.13.4 An Example . 205
11.13.5 A Primal-Dual Approach 206

11.14 Quadratic Programming 207
11.14.1 The Quadratic-Programming Problem 207
11.14.2 An Example . 210
11.14.3 Equality Constraints 210
11.14.4 Sequential Quadratic Programming 211

11.15 Simulated Annealing . 212
11.16 Exercises . 212

12 Solving Systems of Linear Equations 215

12.1 Chapter Summary . 216
12.2 Arbitrary Systems of Linear Equations 216

12.2.1 Under-Determined Systems of Linear Equations . 216
12.2.2 Over-Determined Systems of Linear Equations . 217
12.2.3 Landweber’s Method 218
12.2.4 The Projected Landweber Algorithm 218
12.2.5 The Split-Feasibility Problem 219
12.2.6 An Extension of the CQ Algorithm 221
12.2.7 The Algebraic Reconstruction Technique 221
12.2.8 Double ART . 222

12.3 Regularization . 223
12.3.1 Norm-Constrained Least-Squares 223
12.3.2 Regularizing Landweber’s Algorithm 223
12.3.3 Regularizing the ART 224

12.4 Nonnegative Systems of Linear Equations 224
12.4.1 The Multiplicative ART 225
12.4.2 MART I . 225
12.4.3 MART II . 226
12.4.4 The Simultaneous MART 226
12.4.5 The EMML Iteration 226
12.4.6 Alternating Minimization 227
12.4.7 The Row-Action Variant of EMML 227

xiv Contents

12.4.8 EMART I . 228
12.4.9 EMART II . 228

12.5 Regularized SMART and EMML 229
12.5.1 Regularized SMART 229
12.5.2 Regularized EMML 229

12.6 Block-Iterative Methods 230
12.7 Exercises . 230

13 Conjugate-Direction Methods 231

13.1 Chapter Summary . 231
13.2 Iterative Minimization . 231
13.3 Quadratic Optimization 232
13.4 Conjugate Bases for RJ 235

13.4.1 Conjugate Directions 235
13.4.2 The Gram–Schmidt Method 236

13.5 The Conjugate Gradient Method 237
13.5.1 The Main Idea 237
13.5.2 A Recursive Formula 238

13.6 Krylov Subspaces . 239
13.7 Extensions of the CGM 239
13.8 Exercises . 239

14 Operators 241

14.1 Chapter Summary . 241
14.2 Operators . 242
14.3 Contraction Operators . 243

14.3.1 Lipschitz-Continuous Operators 243
14.3.2 Nonexpansive Operators 243
14.3.3 Strict Contractions 244
14.3.4 Eventual Strict Contractions 245
14.3.5 Instability . 246

14.4 Orthogonal-Projection Operators 246
14.4.1 Properties of the Operator PC 247
14.4.2 PC Is Nonexpansive 247
14.4.3 PC Is Firmly Nonexpansive 247
14.4.4 The Search for Other Properties of PC 248

14.5 Two Useful Identities . 248
14.6 Averaged Operators . 249
14.7 Gradient Operators . 251
14.8 The Krasnosel’skii–Mann–Opial Theorem 252
14.9 Affine-Linear Operators 253
14.10 Paracontractive Operators 253

Contents xv

14.10.1 Linear and Affine Paracontractions 254
14.10.2 The Elsner–Koltracht–Neumann Theorem 256

14.11 Matrix Norms . 257
14.11.1 Induced Matrix Norms 257
14.11.2 Condition Number of a Square Matrix 258
14.11.3 Some Examples of Induced Matrix Norms 259
14.11.4 The Euclidean Norm of a Square Matrix 260

14.12 Exercises . 262

15 Looking Ahead 265

15.1 Chapter Summary . 265
15.2 Sequential Unconstrained Minimization 265
15.3 Examples of SUM . 266

15.3.1 Barrier-Function Methods 266
15.3.2 Penalty-Function Methods 267

15.4 Auxiliary-Function Methods 268
15.4.1 General AF Methods 268
15.4.2 AF Requirements 268

15.5 The SUMMA Class of AF Methods 269

Bibliography 271

Index 287

This page intentionally left blankThis page intentionally left blank

Preface

This book originated as a set of notes I used for a one-semester course
in optimization taken by advanced undergraduate and beginning graduate
students in the mathematical sciences and engineering. For the past sev-
eral years I have used versions of this book as the text for that course. In
that course, the focus is on generality, with emphasis on the fundamental
problems of constrained and unconstrained optimization, linear and convex
programming, on fundamental iterative solution algorithms, such as gra-
dient methods, the Newton-Raphson algorithm and its variants, and more
general iterative optimization methods, and on the necessary mathematical
tools and results that provide the proper foundation for our discussions. I
include some applications, such as game theory, but the emphasis is on gen-
eral problems and the underlying theory. As with most introductory math-
ematics courses, the course has both an explicit and an implicit objective.
Explicitly, I want the student to learn the basics of continuous optimiza-
tion. Implicitly, I want the student to understand better the mathematics
that he or she has already been exposed to in previous classes.

One reason for the usefulness of optimization in applied mathematics is
that Nature herself often optimizes, or perhaps better, Nature economizes.
The patterns and various sizes of tree branches form efficient communi-
cation networks; the hexagonal structures in honeycombs are an efficient
way to fill the space; the shape of a soap bubble minimizes the potential
energy in the surface tension; and so on. Optimization means maximizing
or minimizing some function of one or, more often, several variables. The
function to be optimized is called the objective function. There are two
distinct types of applications that lead to optimization problems, which, to
give them names, I shall call natural problems of optimization and problems
of inference.

Natural problems of optimization are ones in which optimizing a given
function is, more or less, the sole and natural objective. The main goal,
maximum profits, shortest commute, is not open to question, although the
precise function involved will depend on the simplifications adopted as the
real-world problem is turned into mathematics. Examples of such prob-
lems are a manufacturer seeking to maximize profits, subject to whatever
restrictions the situation imposes, or a commuter trying to minimize the
time it takes to get to work, subject, of course, to speed limits. In convert-

xvii

xviii Preface

ing the real-world problem to a mathematical problem, the manufacturer
may or may not ignore non-linearities such as economies of scale, and the
commuter may or may not employ probabilistic models of traffic density.
The resulting mathematical optimization problem to be solved will depend
on such choices, but the original real-world problem is one of optimization,
nevertheless.

In addition to natural optimization problems, there are what we might
call artificial optimization problems, often problems of inference, for which
optimization provides useful tools, but is not the primary objective. Such
problems often arise in solving under-determined or over-determined sys-
tems of linear equations, in statistical parameter estimation, and many
other places. As we shall see, in both types of problems, the optimiza-
tion usually cannot be performed by algebraic means alone and iterative
algorithms are required.

Operations Research (OR) is a broad field involving a variety of applied
optimization problems. Wars and organized violence have always given im-
petus to technological advances, most significantly during the twentieth
century. An important step was taken when scientists employed by the
military realized that studying and improving the use of existing tech-
nology could be as important as inventing new technology. Conducting
research into on-going operations, that is, doing operations research, led
to the search for better, indeed, optimal, ways to schedule ships entering
port, to design convoys, to paint the under-sides of aircraft, to hunt sub-
marines, and many other seemingly mundane tasks [138]. Problems having
to do with the allocation of limited resources arise in a wide variety of
applications, all of which fall under the broad umbrella of OR.

Sometimes we may want to optimize more than one thing; that is, we
may have more than one objective function that we wish to optimize. In
image processing, we may want to find an image as close as possible to
measured data, but one that also has sharp edges. In general, such multiple-
objective optimization is not possible; what is best in one respect need not
be best in other respects. In such cases, it is common to create a single
objective function that is a combination, a sum perhaps, of the original
objective functions, and then to optimize this combined objective function.
In this way, the optimizer of the combined objective function provides a
sort of compromise.

The goal of simultaneously optimizing more than one objective func-
tion, the so-called multiple-objective-function problem, is a common feature
of many economics problems, such as bargaining situations, in which the
various parties all wish to steer the outcome to their own advantage. Typ-
ically, of course, no single solution will optimize everyone’s objective func-
tion. Bargaining is then a method for finding a solution that, in some sense,
makes everyone equally happy or unhappy. A Nash equilibrium is such a
solution.

Preface xix

In 1994, the mathematician John Nash was awarded the Nobel Prize in
Economics for his work in optimization and mathematical economics. His
theory of equilibria is fundamental in the study of bargaining and game
theory. In her book A Beautiful Mind [163], later made into a movie of
the same name starring Russell Crowe, Sylvia Nasar tells the touching
story of Nash’s struggle with schizophrenia, said to have been made more
acute by his obsession with the mysteries of quantum mechanics. Strictly
speaking, there is no Nobel Prize in Economics; what he received is “The
Central Bank of Sweden Prize in Economic Science in Memory of Alfred
Nobel,” which was instituted seventy years after Nobel created his prizes.
Nevertheless, it is commonly spoken of as a Nobel Prize.

Problems of inference often involve estimates to be made from measured
data. Such problems arise in many remote-sensing applications, radio as-
tronomy, or medical imaging, for example, in which, for practical reasons,
the data obtained are insufficient or too noisy to specify a unique source,
and one turns to optimization methods, such as likelihood maximization or
least-squares, to provide usable approximations. In such cases, it is not the
optimization of a function that concerns us, but the optimization of tech-
nique. We cannot know which reconstructed image is the best, in the sense
of most closely describing the true situation, but we do know which tech-
niques of reconstruction are “best” in some specific sense. We choose tech-
niques such as likelihood or entropy maximization, or least-mean-squares
minimization, because these methods are “optimal” in some sense, not be-
cause any single result obtained using these methods is guaranteed to be
the best. Generally, these methods are “best”in some average sense; indeed,
this is the basic idea in statistical estimation.

The mathematical tools required do not usually depend on which type of
problem we are trying to solve. A manufacturer may use the theory of linear
programming to maximize profits, while an oncologist may use likelihood
maximization to image a tumor and linear programming to determine a
suitable spatial distribution of radiation intensities for the therapy. The
only difference, perhaps, is that the doctor may have some choice in how,
or even whether or not, to involve optimization in solving the medical
problems, while the manufacturer’s problem is an optimization problem
from the start, and a linear programming problem once the mathematical
model is selected.

The optimization problems we shall discuss differ from one another in
the nature of the functions being optimized and in the constraints that may
or may not be imposed. The constraints themselves may involve other func-
tions; we may wish to minimize f(x), subject to the constraint g(x) ≤ 0.
The functions may or may not be differentiable. They may or may not
be linear. If they are not linear, they may be convex. They may become
linear or convex once we change variables. The various problem types have
names, such as Linear Programming, Quadratic Programming, Geometric

xx Preface

Programming, and Convex Programming; the use of the term “program-
ming” is an historical accident and has no connection with computer pro-
gramming.

In many of the problems we shall consider, finding exact or approxi-
mate solutions of systems of linear equations plays a central role. When an
exact solution is sought and the number of equations and the number of
unknowns are small, methods such as Gauss elimination can be used. How-
ever, in applications such as medical imaging it is common to encounter
problems involving hundreds or even thousands of equations and unknowns.
It is also common to prefer inexact solutions to exact ones, when the equa-
tions involve noisy, measured data. Even when the number of equations
and unknowns is large, there may not be enough data to specify a unique
solution, and we need to incorporate prior knowledge about the desired
answer. Such is the case with medical tomographic imaging, in which the
images are artificially discretized approximations of parts of the interior of
the body.

For problems involving many variables, it is important to use algorithms
that provide an acceptable approximation of the solution in a reasonable
amount of time. For medical tomography image reconstruction in a clinical
setting, the algorithm must reconstruct a useful image from scanning data
in the time it takes for the next patient to be scanned, which is roughly
fifteen minutes. Some of the algorithms we shall encounter work fine on
small problems, but require far too much time when the problem is large.
Figuring out ways to speed up convergence is an important part of iterative
optimization.

As we noted earlier, optimization is often used when the data pertaining
to a desired mathematical object (a function, a vectorized image, etc.) is
not sufficient to specify uniquely one solution to the problem. It is common
in remote-sensing problems for there to be more than one mathematical
solution that fits the measured data. In such cases, it is helpful to turn to
optimization, and seek the solution consistent with the data that is closest
to what we expect the correct answer to look like. This means that we
must somehow incorporate prior knowledge about the desired answer into
the algorithm for finding it.

In this book we only scratch the surface of optimization; we ignore en-
tire branches of optimization, such as discrete optimization, combinatorial
optimization, stochastic optimization, and many others. The companion
volume [64] continues the discussion of continuous optimization, focusing
on the use of iterative optimization methods in inverse problems. I have
posted copies of most of my articles referenced in the bibliography on my
website, http://faculty.uml.edu/cbyrne/cbyrne.html.

Overview

Chapter 1: Optimization Without Calculus

Although optimization is a central topic in applied mathematics, most
of us first encountered this subject in Calculus I, as an application of dif-
ferentiation. I was surprised to learn how much could be done without
calculus, relying only on a handful of inequalities. The purpose of this
chapter is to present optimization in a way we all could have learned it in
elementary and high school, but didn’t. The key topics in this chapter are
the Arithmetic-Geometric Mean Inequality and Cauchy’s Inequality.

Chapter 2: Geometric Programming

Although Geometric Programming (GP) is a fairly specialized topic, a
discussion of the GP problem is a quite appropriate place to begin. This
chapter on the GP problem depends heavily on the Arithmetic-Geometric
Mean Inequality discussed in the previous chapter, while introducing new
themes, such as duality, primal and dual problems, and iterative computa-
tion, that will be revisited several times throughout the course.

Chapter 3: Basic Analysis

Here we review basic notions from analysis, such as limits of sequences in
RJ , continuous functions, and completeness. Less familiar topics that play
important roles in optimization, such as semi-continuity, are also discussed.

xxi

xxii Overview

Chapter 4: Convex Sets

One of the fundamental problems in continuous optimization, perhaps
the fundamental problem, is to minimize a real-valued function of several
real variables over a subset of RJ . In order to obtain a satisfactory theory
we need to impose certain restrictions on the functions and on the subsets;
convexity is perhaps the most general condition that still permits the de-
velopment of an adequate theory. In this chapter we discuss convex sets,
leaving the subject of convex functions to a subsequent chapter. Theorems
of the Alternative, which we discuss here, play a major role in the duality
theory of linear programming.

Chapter 5: Vector Spaces and Matrices

Convex sets defined by linear equations and inequalities play a major
role in optimization, particularly in linear programming, and matrix alge-
bra is therefore an important tool in these cases. In this chapter we present
a short summary of the basic notions of matrix theory and linear algebra.

Chapter 6: Linear Programming

Linear Programming (LP) problems are the most important of all the
optimization problems, and the most tractable. These problems arise in a
wide variety of applications, and efficient algorithms for solving LP prob-
lems, such as Dantzig’s Simplex Method, are among the most frequently
used routines in computational mathematics. In this chapter we see once
again the notion of duality that we will first encounter in Chapter 2.

Chapter 7: Matrix Games and Optimization

Two-person zero-sum matrix games provide a nice illustration of the
techniques of linear programming. In this chapter we use tools from LP to
establish John von Neumann’s Fundamental Theorem of Game Theory.

Overview xxiii

Chapter 8: Differentiation

While the concepts of directional derivatives and gradients are familiar
enough, they are not the whole story of differentiation. In this chapter
we consider the Gâteaux derivative and the Fréchet derivative, along with
several examples. This chapter can be skipped without harm to the reader.

Chapter 9: Convex Functions

In this chapter we review the basic calculus of real-valued functions of
one and several real variables, with emphasis on convex functions, in prepa-
ration for the study of convex programming and iterative optimization.

Chapter 10: Convex Programming

Convex programming involves the minimization of convex functions,
subject to convex constraints. This is perhaps the most general class of
continuous optimization problems for which a fairly complete theory exists.
Once again, duality plays an important role. Some of the discussion here
concerning Lagrange multipliers should be familiar to students.

Chapter 11: Iterative Optimization

In iterative methods, we begin with a chosen vector and perform some
operation to get the next vector. The same operation is then performed
again to get the third vector, and so on. The goal is to generate a sequence
of vectors that converges to the solution of the problem. Such iterative
methods are needed when the original problem has no algebraic solution,
such as finding

√
3, and also when the problem involves too many variables

to make an algebraic approach feasible, such as solving a large system of
linear equations. In this chapter we consider the application of iterative
methods to the problem of minimizing a function of several variables.

xxiv Overview

Chapter 12: Solving Systems of Linear Equations

This chapter is a sequel to the previous one, in the sense that here
we focus on the use of iterative methods to solve large systems of linear
equations. Specialized algorithms for incorporating positivity constraints
are also considered.

Chapter 13: Conjugate-Direction Methods

The problem here is to find a least-squares solution of a large system of
linear equations. The conjugate-gradient method (CGM) is tailored to this
specific problem, although extensions of this method have been used for
more general optimization. In theory, the CGM converges to a solution in
a finite number of steps, but in practice, the CGM is viewed as an iterative
method.

Chapter 14: Operators

In this chapter we consider several classes of linear and nonlinear oper-
ators that play important roles in optimization.

Chapter 15: Looking Ahead

We have just scratched the surface of optimization. In this chapter we
preview sequential unconstrained iterative optimization methods, discussed
in greater detail in the companion volume [64].

Chapter 1

Optimization Without Calculus

1.1 Chapter Summary . 1
1.2 The Arithmetic Mean-Geometric Mean Inequality 2
1.3 Applying the AGM Inequality: the Number e 2
1.4 Extending the AGM Inequality . 3
1.5 Optimization Using the AGM Inequality . 4

1.5.1 Example 1: Minimize This Sum . 4
1.5.2 Example 2: Maximize This Product . 4
1.5.3 Example 3: A Harder Problem? . 4

1.6 The Hölder and Minkowski Inequalities . 5
1.6.1 Hölder’s Inequality . 5
1.6.2 Minkowski’s Inequality . 6

1.7 Cauchy’s Inequality . 6
1.8 Optimizing Using Cauchy’s Inequality . 8

1.8.1 Example 4: A Constrained Optimization 8
1.8.2 Example 5: A Basic Estimation Problem 9
1.8.3 Example 6: A Filtering Problem . 10

1.9 An Inner Product for Square Matrices . 11
1.10 Discrete Allocation Problems . 13
1.11 Exercises . 15

1.1 Chapter Summary

In our study of optimization, we shall encounter a number of sophis-
ticated techniques, involving first and second partial derivatives, systems
of linear equations, nonlinear operators, specialized distance measures, and
so on. It is good to begin by looking at what can be accomplished without
sophisticated techniques, even without calculus. It is possible to achieve
much with powerful, yet simple, inequalities. Someone once remarked, ex-
aggerating slightly, that, in the right hands, the Cauchy Inequality and
integration by parts are all that are really needed. Some of the discussion
in this chapter follows that in Niven [168].

Students typically encounter optimization problems as applications of
differentiation, while the possibility of optimizing without calculus is left

1

2 A First Course in Optimization

unexplored. In this chapter we develop the Arithmetic Mean-Geometric
Mean Inequality, abbreviated the AGM Inequality, from the convexity of
the logarithm function, use the AGM to derive several important inequali-
ties, including Cauchy’s Inequality, and then discuss optimization methods
based on the Arithmetic Mean-Geometric Mean Inequality and Cauchy’s
Inequality.

1.2 The Arithmetic Mean-Geometric Mean Inequality

Let x1, ..., xN be positive numbers. According to the famous Arithmetic
Mean-Geometric Mean Inequality, abbreviated AGM Inequality,

G = (x1 · x2 · · · xN)1/N ≤ A =
1

N
(x1 + x2 + ...+ xN), (1.1)

with equality if and only if x1 = x2 = ... = xN . To prove this, consider
the following modification of the product x1 · · · xN . Replace the smallest
of the xn, call it x, with A and the largest, call it y, with x+ y − A. This
modification does not change the arithmetic mean of the N numbers, but
the product increases, unless x = y = A already, since xy ≤ A(x+ y −A).
(Why?) We repeat this modification, until all the xn approach A, at which
point the product reaches its maximum.

For example, 2 ·3 ·4 ·6 ·20 becomes 3 ·4 ·6 ·7 ·15, and then 4 ·6 ·7 ·7 ·11,
6 · 7 · 7 · 7 · 8, and finally 7 · 7 · 7 · 7 · 7.

1.3 Applying the AGM Inequality: the Number e

We can use the AGM Inequality to show that

lim
n→∞

(
1 +

1

n

)n
= e.

Let f(n) =
(

1 + 1
n

)n
, the product of the n+ 1 numbers 1, 1 + 1

n , ..., 1 + 1
n .

Applying the AGM Inequality, we obtain the inequality

f(n) ≤
(n+ 2

n+ 1

)n+1

= f(n+ 1),

so we know that the sequence {f(n)} is increasing. Now define g(n) =
(1 + 1

n)n+1; we show that g(n) ≤ g(n− 1) and f(n) ≤ g(m), for all positive

Optimization Without Calculus 3

integers m and n. Consider (1 − 1
n)n, the product of the n + 1 numbers

1, 1− 1
n , ..., 1−

1
n . Applying the AGM Inequality, we find that(

1− 1

n+ 1

)n+1

≥
(

1− 1

n

)n
,

or (n

n+ 1

)n+1

≥
(n− 1

n

)n
.

Taking reciprocals, we get g(n) ≤ g(n−1). Since f(n) < g(n) and {f(n)} is
increasing, while {g(n)} is decreasing, we can conclude that f(n) ≤ g(m),
for all positive integers m and n. Both sequences therefore have limits.
Because the difference

g(n)− f(n) =
1

n

(
1 +

1

n

)n
→ 0,

as n → ∞, we conclude that the limits are the same. This common limit
we can define as the number e.

1.4 Extending the AGM Inequality

We begin with the notion of a convex function of a real variable.

Definition 1.1 A function f : R→ R is said to be convex over an interval
(a, b) if

f(a1t1 + a2t2 + ...+ aN tN) ≤ a1f(t1) + a2f(t2) + ...+ aNf(tN),

for all positive integers N , all positive real numbers an that sum to one,
and all real numbers tn in (a, b).

Suppose, once again, that x1, ..., xN are positive numbers. Let a1, ..., aN
be positive real numbers that sum to one. Then the Generalized AGM
Inequality (GAGM Inequality) is

xa11 x
a2
2 · · · x

aN
N ≤ a1x1 + a2x2 + ...+ aNxN , (1.2)

with equality if and only if x1 = x2 = ... = xN . We can prove this using the
convexity of the function f(x) = − log x. The inequality (1.2) generalizes
the one in (1.1).

If a function f(x) is twice differentiable on (a, b), then f(x) is convex
over (a, b) if and only if the second derivative of f(x) is nonnegative on
(a, b). For example, the function f(x) = − log x is convex on the positive
x-axis. The GAGM Inequality follows immediately.

4 A First Course in Optimization

1.5 Optimization Using the AGM Inequality

We illustrate the use of the AGM Inequality for optimization through
several examples.

1.5.1 Example 1: Minimize This Sum

Find the minimum of the function

f(x, y) =
12

x
+

18

y
+ xy,

over positive x and y.
We note that the three terms in the sum have a fixed product of 216,

so, by the AGM Inequality, the smallest value of 1
3f(x, y) is (216)1/3 = 6.

The smallest value occurs when the three terms are equal. Therefore, each
is equal to 6; so x = 2 and y = 3. The smallest value of f(x, y) is therefore
18.

1.5.2 Example 2: Maximize This Product

Find the maximum value of the product

f(x, y) = xy(72− 3x− 4y),

over positive x and y.
The terms x, y and 72− 3x− 4y do not have a constant sum, but the

terms 3x, 4y and 72 − 3x − 4y do have a constant sum, namely 72, so we
rewrite f(x, y) as

f(x, y) =
1

12
(3x)(4y)(72− 3x− 4y).

By the AGM Inequality, the product (3x)(4y)(72− 3x− 4y) is maximized
when the factors 3x, 4y and 72 − 3x − 4y are each equal to 24, so when
x = 8 and y = 6. The maximum value of the product is then 1152.

1.5.3 Example 3: A Harder Problem?

Both of the previous two problems can be solved using the standard
calculus technique of setting the two first partial derivatives to zero. Here
is an example that may not be so easily solved in that way: minimize the
function

f(x, y) = 4x+
x

y2
+

4y

x
,

Optimization Without Calculus 5

over positive values of x and y. Try taking the first partial derivatives and
setting them both to zero. Even if we manage to solve this system of coupled
nonlinear equations, deciding if we actually have found the minimum may
not be easy; we would have to investigate the second derivative matrix, the
Hessian matrix. We can employ the AGM Inequality by rewriting f(x, y)
as

f(x, y) = 4
(4x+ x

y2 + 2y
x + 2y

x

4

)
.

The product of the four terms in the arithmetic mean expression is 16, so
the GM is 2. Therefore, 1

4f(x, y) ≥ 2, with equality when all four terms are

equal to 2; that is, 4x = 2, so that x = 1
2 and 2y

x = 2, so y = 1
2 also. The

minimum value of f(x, y) is then 8.

1.6 The Hölder and Minkowski Inequalities

Let c = (c1, ..., cN) and d = (d1, ..., dN) be vectors with complex entries
and let p and q be positive real numbers such that

1

p
+

1

q
= 1.

The p-norm of c is defined to be

‖c‖p =

(
N∑
n=1

|cn|p
)1/p

,

with the q-norm of d, denoted ‖d‖q, defined similarly.

1.6.1 Hölder’s Inequality

Hölder’s Inequality is the following:

N∑
n=1

|cndn| ≤ ‖c‖p‖d‖q,

with equality if and only if(
|cn|
‖c‖p

)p
=

(
|dn|
‖d‖q

)q
for each n.

6 A First Course in Optimization

Hölder’s Inequality follows from the GAGM Inequality. To see this, we
fix n and apply Inequality (1.2), with

x1 =

(
|cn|
‖c‖p

)p
,

a1 =
1

p
,

x2 =

(
|dn|
‖d‖q

)q
,

and

a2 =
1

q
.

From (1.2) we then have(
|cn|
‖c‖p

)(
|dn|
‖d‖q

)
≤ 1

p

(
|cn|
‖c‖p

)p
+

1

q

(
|dn|
‖d‖q

)q
.

Now sum both sides over the index n.

1.6.2 Minkowski’s Inequality

Minkowski’s Inequality, which is a consequence of Hölder’s Inequality,
states that

‖c+ d‖p ≤ ‖c‖p + ‖d‖p ;

it is the triangle inequality for the metric induced by the p-norm.
To prove Minkowski’s Inequality, we write

N∑
n=1

|cn + dn|p ≤
N∑
n=1

|cn||cn + dn|p−1 +

N∑
n=1

|dn||cn + dn|p−1.

Then we apply Hölder’s Inequality to both of the sums on the right side of
the equation.

1.7 Cauchy’s Inequality

For the choices p = q = 2, Hölder’s Inequality becomes the famous
Cauchy Inequality, which we rederive in a different way in this section.

Optimization Without Calculus 7

For simplicity, we assume now that the vectors have real entries and for
notational convenience later we use xn and yn in place of cn and dn.

Let x = (x1, ..., xN)T and y = (y1, ..., yN)T be column vectors with real
entries. The set of all such vectors we denote by RN ; when we allow the
entries to be complex we get the set CN . The inner product of x and y is

〈x, y〉 = x1y1 + x2y2 + ...+ xNyN = x · y = yTx.

The two-norm of the vector x is

‖x‖2 =
√
〈x, x〉.

Cauchy’s Inequality is
|〈x, y〉| ≤ ‖x‖2 ‖y‖2,

with equality if and only if there is a real number a such that x = ay.
A vector x = (x1, ..., xN)T in the real N -dimensional space RN can be

viewed in two slightly different ways. The first way is to imagine x as simply
a point in that space; for example, if N = 2, then x = (x1, x2) would be the
point in two-dimensional space having x1 for its first coordinate and x2 for
its second. When we speak of the norm of x, which we think of as a length,
we could be thinking of the distance from the origin to the point x. But
we could also be thinking of the length of the directed line segment that
extends from the origin to the point x. This line segment is also commonly
denoted just x. There will be times when we want to think of the members
of RN as points. At other times, we shall prefer to view them as directed
line segments; for example, if x and y are two points in RN , their difference,
x − y, is more likely to be viewed as the directed line segment extending
from y to x, rather than a third point situated somewhere else in RN . We
shall make no explicit distinction between the two views, but rely on the
situation to tell us which one is the better interpretation.

To prove Cauchy’s Inequality, we begin with the fact that, for every real
number t,

0 ≤ ‖x− ty‖22 = ‖x‖22 − (2〈x, y〉)t+ ‖y‖22t2.

This quadratic in the variable t is never negative, so cannot have two dis-
tinct real roots. It follows that the term under the radical sign in the
quadratic equation must be nonpositive, that is,

(2〈x, y〉)2 − 4‖y‖22‖x‖22 ≤ 0. (1.3)

We have equality in (1.3) if and only if the quadratic has a double real
root, say t = a. Then we have

‖x− ay‖22 = 0.

As an aside, suppose we had allowed the variable t to be complex. Clearly

8 A First Course in Optimization

‖x− ty‖ cannot be zero for any non-real value of t. Doesn’t this contradict
the fact that every quadratic has two roots in the complex plane?

We can interpret Cauchy’s Inequality as providing an upper bound for
the quantity (

N∑
n=1

xnyn

)2

.

The Pólya–Szegö Inequality provides a lower bound for the same quantity.

Theorem 1.1 (The Pólya–Szegö Inequality) Let 0 < m1 ≤ xn ≤ M1

and 0 < m2 ≤ yn ≤M2, for all n. Then

N∑
n=1

x2n

N∑
n=1

y2n ≤
M1M2 +m1m2√

4m1m2M1M2

(
N∑
n=1

xnyn

)2

.

1.8 Optimizing Using Cauchy’s Inequality

We present three examples to illustrate the use of Cauchy’s Inequality
in optimization.

1.8.1 Example 4: A Constrained Optimization

Find the largest and smallest values of the function

f(x, y, z) = 2x+ 3y + 6z,

among the points (x, y, z) with x2 + y2 + z2 = 1.
From Cauchy’s Inequality we know that

49 = (22 + 32 + 62)(x2 + y2 + z2) ≥ (2x+ 3y + 6z)2,

so that f(x, y, z) lies in the interval [−7, 7]. We have equality in Cauchy’s
Inequality if and only if the vector (2, 3, 6) is parallel to the vector (x, y, z),
that is

x

2
=
y

3
=
z

6
.

It follows that x = t, y = 3
2 t, and z = 3t, with t2 = 4

49 . The smallest value
of f(x, y, z) is −7, when x = − 2

7 , and the largest value is +7, when x = 2
7 .

Optimization Without Calculus 9

1.8.2 Example 5: A Basic Estimation Problem

The simplest problem in estimation theory is to estimate the value of a
constant c, given J data values zj = c + vj , j = 1, ..., J , where the vj are
random variables representing additive noise or measurement error. Assume
that the expected values of the vj are E(vj) = 0, the vj are uncorrelated,
so E(vjvk) = 0 for j different from k, and the variances of the vj are
E(v2j) = σ2

j > 0. A linear estimate of c has the form

ĉ =

J∑
j=1

bjzj .

The estimate ĉ is unbiased if E(ĉ) = c, which forces
∑J
j=1 bj = 1. The best

linear unbiased estimator, the BLUE, is the one for which E((ĉ − c)2) is
minimized. This means that the bj must minimize

E

(
J∑
j=1

J∑
k=1

bjbkvjvk

)
=

J∑
j=1

b2jσ
2
j ,

subject to

J∑
j=1

bj = 1. (1.4)

To solve this minimization problem, we turn to Cauchy’s Inequality.
We can write

1 =

J∑
j=1

bj =

J∑
j=1

(bjσj)
1

σj
.

Cauchy’s Inequality then tells us that

1 ≤

√√√√ J∑
j=1

b2jσ
2
j

√√√√ J∑
j=1

1

σ2
j

,

with equality if and only if there is a constant, say λ, such that

bjσj = λ
1

σj
,

for each j. So we have

bj = λ
1

σ2
j

,

10 A First Course in Optimization

for each j. Summing on both sides and using Equation (1.4), we find that

λ = 1/

J∑
j=1

1

σ2
j

.

The BLUE is therefore

ĉ = λ

J∑
j=1

zj
σ2
j

.

When the variances σ2
j are all the same, the BLUE is simply the arithmetic

mean of the data values zj .

1.8.3 Example 6: A Filtering Problem

One of the fundamental operations in signal processing is filtering the
data vector x = γs+n, to remove the noise component n, while leaving the
signal component s relatively unaltered [53]. This can be done to estimate
γ, the amount of the signal vector s present. It can also be done to detect if
the signal is present at all, that is, to decide if γ > 0. The noise is typically
known only through its covariance matrix Q, which is the positive-definite,
symmetric matrix having for its entries Qjk = E(njnk). The filter usually
is linear and takes the form of an estimate of γ:

γ̂ = bTx,

where the superscript T denotes matrix transpose. We want |bT s|2 large,
and, on average, |bTn|2 small; that is, we want E(|bTn|2) = bTE(nnT)b =
bTQb small. The best choice is the vector b that maximizes the gain of the
filter, that is, the ratio

|bT s|2/bTQb.

We can solve this problem using the Cauchy Inequality.

Definition 1.2 Let S be a square matrix. A nonzero vector u is an eigen-
vector of S if there is a scalar λ such that Su = λu. Then the scalar λ is
said to be an eigenvalue of S associated with the eigenvector u.

Definition 1.3 The transpose, B = AT , of an M by N matrix A is the
N by M matrix having the entries Bn,m = Am,n.

Definition 1.4 A square matrix S is symmetric if ST = S.

A basic theorem in linear algebra is that, for any symmetric N by N
matrix S, RN has an orthonormal basis consisting of mutually orthogonal,
norm-one eigenvectors of S. We then define U to be the matrix whose

Optimization Without Calculus 11

columns are these orthonormal eigenvectors un and L to be the diagonal
matrix with the associated eigenvalues λn on the diagonal. We can easily
see that U is an orthogonal matrix, that is, UTU = I. We can then write

S = ULUT ; (1.5)

this is the eigenvalue/eigenvector decomposition of S. The eigenvalues of a
symmetric S are always real numbers.

Definition 1.5 A J by J symmetric matrix Q is nonnegative definite if,
for every x in RJ , we have xTQx ≥ 0. If xTQx > 0 whenever x is not the
zero vector, then Q is said to be positive definite.

In Exercise 1.13 the reader is asked to show that the eigenvalues of a
nonnegative (positive) definite matrix are always nonnegative (positive).

A covariance matrix Q is always nonnegative definite, since

xTQx = E

((J∑
j=1

xjnj

)2)
.

Therefore, its eigenvalues are nonnegative; typically, they are actually posi-
tive, as we shall assume now. We then let C = U

√
LUT , which is called the

symmetric square root of Q since Q = C2 = CTC. The Cauchy Inequality
then tells us that

(bT s)2 = (bTCC−1s)2 ≤ [bTCCT b][sT (C−1)TC−1s],

with equality if and only if the vectors CT b and C−1s are parallel. It follows
that

b = α(CCT)−1s = αQ−1s,

for any constant α. It is standard practice to select α so that bT s = 1,
therefore α = 1/sTQ−1s and the optimal filter b is

b =
1

sTQ−1s
Q−1s.

1.9 An Inner Product for Square Matrices

The trace of a square matrix M , denoted trM , is the sum of the entries
down the main diagonal. Given square matrices A and B with real entries,
the trace of the product BTA defines the trace inner product, that is

〈A,B〉 = tr(BTA),

12 A First Course in Optimization

where the superscript T denotes the transpose of a matrix. This inner
product can then be used to define a norm of A, called the Frobenius norm,
by

‖A‖F =
√
〈A,A〉 =

√
tr(ATA).

It is easy to see that the Frobenius norm of an M by N matrix A is the
two-norm of its vectorization, vec(A), which is the MN by 1 column vector
whose entries are those of A.

From the eigenvector/eigenvalue decomposition, we know that, for every
symmetric matrix S, there is an orthogonal matrix U such that

S = UD(λ(S))UT ,

where λ(S) = (λ1, ..., λN) is a vector whose entries are eigenvalues of the
symmetric matrix S, and D(λ(S)) is the diagonal matrix whose entries are
the entries of λ(S). Then we can easily see that

‖S‖F = ‖λ(S)‖2.

Denote by [λ(S)] the vector of eigenvalues of S, ordered in nonincreasing
order. We have the following result.

Theorem 1.2 (Fan’s Theorem) Any real symmetric matrices S and R
satisfy the inequality

tr(SR) ≤ 〈[λ(S)], [λ(R)]〉,

with equality if and only if there is an orthogonal matrix U such that

S = UD([λ(S)])UT ,

and
R = UD([λ(R)])UT .

From linear algebra, we know that S and R can be simultaneously diag-
onalized if and only if they commute; this is a stronger condition than
simultaneous diagonalization.

If S and R are diagonal matrices already, then Fan’s Theorem tells us
that

〈λ(S), λ(R)〉 ≤ 〈[λ(S)], [λ(R)]〉.
Since any real vectors x and y are λ(S) and λ(R), for some symmetric S
and R, respectively, we have the following theorem.

Theorem 1.3 (The Hardy–Littlewood–Polya Inequality) Let x and
y be vectors in RN . Then

〈x, y〉 ≤ 〈[x], [y]〉.

Most of the optimization problems discussed in this chapter fall under
the heading of Geometric Programming, which we shall present in a more
formal way in Chapter 2.

Optimization Without Calculus 13

1.10 Discrete Allocation Problems

Most of the optimization problems we consider in this book are contin-
uous problems, in the sense that the variables involved are free to take on
values within a continuum. A large branch of optimization deals with dis-
crete problems; the interested reader should consult [137]. Typically, these
discrete problems can be solved, in principle, by an exhaustive checking
of a large, but finite, number of possibilities; what is needed is a faster
method. The optimal allocation problem is a good example of a discrete
optimization problem.

We have n different jobs to assign to n different people. For i = 1, ..., n
and j = 1, ..., n the quantity Cij is the cost of having person i do job j.
The n by n matrix C with these entries is the cost matrix. An assignment
is a selection of n entries of C so that no two are in the same column or the
same row; that is, everybody gets one job. Our goal is to find an assignment
that minimizes the total cost.

We know that there are n! ways to make assignments, so one solution
method would be to determine the cost of each of these assignments and
select the cheapest. But for large n this is impractical. We want an algo-
rithm that will solve the problem with less calculation. The algorithm we
present here, discovered in the 1930’s by two Hungarian mathematicians,
is called, unimaginatively, the Hungarian Method.

To illustrate, suppose there are three people and three jobs, and the
cost matrix is

C =

53 96 37
47 87 41
60 92 36

 .
The number 41 in the second row, third column indicates that it costs 41
dollars to have the second person perform the third job.

The algorithm is as follows:

Step 1: Subtract the minimum of each row from all the entries of that row.
This is equivalent to saying that each person charges a minimum
amount just to be considered, which must be paid regardless of the
allocation made. All we can hope to do now is to reduce the remain-
ing costs. Subtracting these fixed costs, which do not depend on the
allocations, does not change the optimal solution.

The new matrix is then 16 59 0
6 46 0
24 56 0

 .

14 A First Course in Optimization

Step 2: Subtract each column minimum from the entries of its column. This is
equivalent to saying that each job has a minimum cost, regardless of
who performs it, perhaps for materials, say, or a permit. Subtracting
those costs does not change the optimal solution. The matrix becomes10 13 0

0 0 0
18 10 0

 .
Step 3: Draw a line through the least number of rows and columns that results

in all zeros being covered by a line; here I have put in boldface the
entries covered by a line. The matrix becomes10 13 0

0 0 0
18 10 0

 .
We have used a total of two lines, one row and one column. What we
are searching for is a set of zeros such that each row and each column
contains a zero. Then n lines will be required to cover the zeros.

Step 4: If the number of lines just drawn is n we have finished; the zeros just
covered by a line tell us the assignment we want. Since n lines are
needed, there must be a zero in each row and in each column. In our
example, we are not finished.

Step 5: If, as in our example, the number of lines drawn is fewer than n,
determine the smallest entry not yet covered by a line (not boldface,
here). It is 10 in our example. Then subtract this number from all
the uncovered entries and add it to all the entries covered by both a
vertical and horizontal line. Then return to Step 3.

This rather complicated step can be explained as follows. It is equiv-
alent to, first, subtracting this smallest entry from all entries of each
row not yet completely covered by a line, whether or not the entry
is zero, and second, adding this quantity to every column covered by
a line. This second step has the effect of restoring to zero those zero
values that just became negative. As we have seen, subtracting the
same quantity from every entry of a row does not change the optimal
solution; we are just raising the fixed cost charged by certain of the
participants. Similarly, adding the same quantity to each entry of a
column just increases the cost of the job, regardless of who performs
it, so does not change the optimal solution.

Our matrix becomes 0 3 0
0 0 10
8 0 0

 .

Optimization Without Calculus 15

In our example, when we return to Step 3 we find that we need three
lines now and so we are finished. There are two optimal allocations: one
is to assign the first job to the first person, the second job to the second
person, and the third job to the third person, for a total cost of 176 dollars;
the other optimal allocation is to assign the second person to the first job,
the third person to the second job, and the first person to the third job,
again with a total cost of 176 dollars.

1.11 Exercises

Ex. 1.1 [177] Suppose that, in order to reduce automobile gasoline con-
sumption, the government sets a fuel-efficiency target of T km/liter, and
then decrees that, if an auto maker produces a make of car with fuel effi-
ciency of b < T , then it must also produce a make of car with fuel efficiency
rT , for some r > 1, such that the average of rT and b is T . Assume that
the car maker sells the same number of each make of car. The question is:
Is this a good plan? Why or why not? Be specific and quantitative in your
answer. Hint: The correct answer is No!.

Ex. 1.2 Let A be the arithmetic mean of a finite set of positive numbers,
with x the smallest of these numbers, and y the largest. Show that

xy ≤ A(x+ y −A),

with equality if and only if x = y = A.

Ex. 1.3 Some texts call a function f(x) convex if

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

for all x and y in the domain of the function and for all α in the interval
[0, 1]. For this exercise, let us call this two-convex. Show that this definition
is equivalent to the one given in Definition 1.1. Hints: First, give the appro-
priate definition of three-convex. Then show that three-convex is equivalent
to two-convex; it will help to write

α1x1 + α2x2 = (1− α3)

(
α1

(1− α3)
x1 +

α2

(1− α3)
x2

)
.

Finally, use induction on the number N .

Ex. 1.4 Minimize the function

f(x) = x2 +
1

x2
+ 4x+

4

x
,

16 A First Course in Optimization

over positive x. Note that the minimum value of f(x, y) cannot be found
by a straight-forward application of the AGM Inequality to the four terms
taken together. Try to find a way of rewriting f(x), perhaps using more than
four terms, so that the AGM Inequality can be applied to all the terms.

Ex. 1.5 Find the maximum value of f(x, y) = x2y, if x and y are restricted
to positive real numbers for which 6x+ 5y = 45.

Ex. 1.6 Find the smallest value of

f(x) = 5x+
16

x
+ 21,

over positive x.

Ex. 1.7 Find the smallest value of the function

f(x, y) =
√
x2 + y2,

among those values of x and y satisfying 3x− y = 20.

Ex. 1.8 Find the maximum and minimum values of the function

f(x) =
√

100 + x2 − x

over nonnegative x.

Ex. 1.9 Multiply out the product

(x+ y + z)
(1

x
+

1

y
+

1

z

)
and deduce that the least value of this product, over nonnegative x, y, and
z, is 9. Use this to find the least value of the function

f(x, y, z) =
1

x
+

1

y
+

1

z
,

over nonnegative x, y, and z having a constant sum c.

Ex. 1.10 The harmonic mean of positive numbers a1, ..., aN is

H =

((1

a1
+ ...+

1

aN

)
/N

)−1
.

Prove that the geometric mean G is not less than H.

Optimization Without Calculus 17

Ex. 1.11 Prove that(1

a1
+ ...+

1

aN

)
(a1 + ...+ aN) ≥ N2,

with equality if and only if a1 = ... = aN .

Ex. 1.12 Show that the Equation (1.5), S = ULUT , can be written as

S = λ1u
1(u1)T + λ2u

2(u2)T + ...+ λNu
N (uN)T ,

and

S−1 =
1

λ1
u1(u1)T +

1

λ2
u2(u2)T + ...+

1

λN
uN (uN)T .

Ex. 1.13 Show that a real symmetric matrix Q is nonnegative (positive)
definite if and only if all its eigenvalues are nonnegative (positive).

Ex. 1.14 Let Q be positive-definite, with positive eigenvalues

λ1 ≥ ... ≥ λN > 0

and associated mutually orthogonal norm-one eigenvectors un. Show that

xTQx ≤ λ1,

for all vectors x with ‖x‖2 = 1, with equality if x = u1. Hints: Use

1 = ‖x‖22 = xTx = xT Ix,

I = u1(u1)T + ...+ uN (uN)T ,

and Equation (1.12).

Ex. 1.15 Young’s Inequality Suppose that p and q are positive numbers
greater than one such that 1

p + 1
q = 1. If x and y are positive numbers, then

xy ≤ xp

p
+
yq

q
,

with equality if and only if xp = yq. Hint: Use the GAGM Inequality.

Ex. 1.16 [168] For given constants c and d, find the largest and smallest
values of cx+ dy taken over all points (x, y) of the ellipse

x2

a2
+
y2

b2
= 1.

18 A First Course in Optimization

Ex. 1.17 [168] Find the largest and smallest values of 2x+y on the circle
x2 + y2 = 1. Where do these values occur?

Ex. 1.18 When a real M by N matrix A is stored in the computer it is
usually vectorized; that is, the matrix

A =

A11 A12 . . . A1N

A21 A22 . . . A2N

.

.

.
AM1 AM2 . . . AMN

becomes

vec(A) = (A11, A21, ..., AM1, A12, A22, ..., AM2, ..., AMN)T .

Show that the dot product vec(A)·vec(B) = vec(B)Tvec(A) can be ob-
tained by

vec(A)·vec(B) = trace (ABT) = trace (BTA).

Ex. 1.19 Apply the Hungarian Method to solve the allocation problem with
the cost matrix

C =

90 75 75 80
35 85 55 65
125 95 90 105
45 110 95 115

 .
You should find that the minimum cost is 275 dollars.

Chapter 2

Geometric Programming

2.1 Chapter Summary . 19
2.2 An Example of a GP Problem . 19
2.3 Posynomials and the GP Problem . 20
2.4 The Dual GP Problem . 21
2.5 Solving the GP Problem . 24
2.6 Solving the DGP Problem . 24

2.6.1 The MART . 25
2.6.2 MART I . 25
2.6.3 MART II . 26
2.6.4 Using the MART to Solve the DGP Problem 26

2.7 Constrained Geometric Programming . 28
2.8 Exercises . 30

2.1 Chapter Summary

Geometric Programming (GP) involves the minimization of functions
of a special type, known as posynomials. The first systematic treatment
of geometric programming appeared in the book [101] by Duffin, Peterson
and Zener, the founders of geometric programming. As we shall see, the
Generalized Arithmetic-Geometric Mean Inequality plays an important role
in the theoretical treatment of geometric programming. In this chapter we
introduce the notions of duality and cross-entropy distance, and begin our
study of iterative algorithms. Some of this discussion of the GP problem
follows that in Peressini et al. [176].

2.2 An Example of a GP Problem

The following optimization problem was presented originally by Duffin,
et al. [101] and discussed by Peressini et al. in [176]. It illustrates well

19

20 A First Course in Optimization

the type of problem considered in geometric programming. Suppose that
400 cubic yards of gravel must be ferried across a river in an open box of
length t1, width t2 and height t3. Each round-trip costs ten cents. The sides
and the bottom of the box cost 10 dollars per square yard to build, while
the ends of the box cost 20 dollars per square yard. The box will have no
salvage value after it has been used. Determine the dimensions of the box
that minimize the total cost.

Although we know that the number of trips across the river must be
a positive integer, we shall ignore that limitation in what follows, and use
400/t1t2t3 as the number of trips. In this particular example, it will turn
out that this quantity is a positive integer.

With t = (t1, t2, t3), the cost function is

g(t) =
40

t1t2t3
+ 20t1t3 + 10t1t2 + 40t2t3, (2.1)

which is to be minimized over ti > 0, for i = 1, 2, 3. The function g(t) is an
example of a posynomial.

2.3 Posynomials and the GP Problem

Functions g(t) of the form

g(t) =

n∑
j=1

cj

(m∏
i=1

t
aij
i

)
, (2.2)

with t = (t1, ..., tm), the ti > 0, cj > 0 and aij real, are called posynomials.
The geometric programming problem, denoted GP, is to minimize a given
posynomial over positive t. In order for the minimum to be greater than
zero, we need some of the aij in Equation (2.2) to be negative.

We denote by uj(t) the function

uj(t) = cj

m∏
i=1

t
aij
i ,

so that

g(t) =

n∑
j=1

uj(t).

For any choice of δj > 0, j = 1, ..., n, with

n∑
j=1

δj = 1,

Geometric Programming 21

we have

g(t) =

n∑
j=1

δj

(uj(t)
δj

)
.

Applying the Generalized Arithmetic-Geometric Mean (GAGM) Inequal-
ity, we have

g(t) ≥
n∏
j=1

(uj(t)
δj

)δj
.

Therefore,

g(t) ≥
n∏
j=1

(cj
δj

)δj(n∏
j=1

m∏
i=1

t
aijδj
i

)
, or

g(t) ≥
n∏
j=1

(cj
δj

)δj(m∏
i=1

t
∑n

j=1 aijδj
i

)
, (2.3)

Suppose that we can find δj > 0 with

n∑
j=1

aijδj = 0,

for each i. We let δ be the vector δ = (δ1, ..., δn). Then the inequality in
(2.3) becomes

g(t) ≥ v(δ),

for

v(δ) =

n∏
j=1

(cj
δj

)δj
. (2.4)

Note that we can also write Equation (2.4) as

log v(δ) =

n∑
j=1

δj log
(cj
δj

)
.

2.4 The Dual GP Problem

The dual geometric programming problem, denoted DGP, is to maximize
the function v(δ), over all feasible δ = (δ1, ..., δn), that is, all positive δ for
which

n∑
j=1

δj = 1, (2.5)

22 A First Course in Optimization

and

n∑
j=1

aijδj = 0, (2.6)

for each i = 1, ...,m.
Denote by A the m+1 by n matrix with entries Aij = aij , and Am+1,j =

1, for j = 1, ..., n and i = 1, ...,m; an example of such a matrix A occurs in
Equation (2.12). Then we can write Equations (2.5) and (2.6) as

Aδ = u =

0
0
·
·
·
0
1

.

Clearly, we have

g(t) ≥ v(δ), (2.7)

for any positive t and feasible δ. Of course, there may be no feasible δ, in
which case DGP is said to be inconsistent.

As we have seen, the inequality in (2.7) is based on the GAGM Inequal-
ity. We have equality in the GAGM Inequality if and only if the terms in
the arithmetic mean are all equal. In this case, this says that there is a
constant λ such that

uj(t)

δj
= λ,

for each j = 1, ..., n. Using the fact that the δj sum to one, it follows that

λ =

n∑
j=1

uj(t) = g(t),

and

δj =
uj(t)

g(t)
, (2.8)

for each j = 1, ..., n.
As the theorem below asserts, if t∗ is positive and minimizes g(t), then

δ∗, the associated δ from Equation (2.8), is feasible and solves DGP. Since
we have equality in the GAGM Inequality now, we have

g(t∗) = v(δ∗).

The main theorem in geometric programming is the following.

Geometric Programming 23

Theorem 2.1 If t∗ > 0 minimizes g(t), then DGP is consistent. In addi-
tion, the choice

δ∗j =
uj(t

∗)

g(t∗)
(2.9)

is feasible and solves DGP. Finally,

g(t∗) = v(δ∗);

that is, there is no duality gap.

Proof: We have
∂uj
∂ti

(t∗) =
aijuj(t

∗)

t∗i
,

so that

t∗i
∂uj
∂ti

(t∗) = aijuj(t
∗), (2.10)

for each i = 1, ...,m. Since t∗ minimizes g(t), we have

0 =
∂g

∂ti
(t∗) =

n∑
j=1

∂uj
∂ti

(t∗),

so that, from Equation (2.10), we have

0 =

n∑
j=1

aijuj(t
∗),

for each i = 1, ...,m. It follows that δ∗ is feasible. Since

uj(t
∗)/δ∗j = g(t∗) = λ,

for all j, we have equality in the GAGM Inequality, and we know

g(t∗) = v(δ∗).

Therefore, δ∗ solves DGP. This completes the proof.

In Exercise 2.1 you are asked to show that the function

g(t1, t2) =
2

t1t2
+ t1t2 + t1

has no minimum over the region t1 > 0, and t2 > 0. As you will discover,
the DGP is inconsistent in this case. We can still ask if there is a positive
greatest lower bound to the values that g can take on. Without too much

24 A First Course in Optimization

difficulty, we can determine that if t1 ≥ 1 then g(t1, t2) ≥ 3, while if t2 ≤ 1
then g(t1, t2) ≥ 4. Therefore, our hunt for the greatest lower bound is
concentrated in the region described by 0 < t1 < 1, and t2 > 1. Since there
is no minimum, we must consider values of t2 going to infinity, but such
that t1t2 does not go to infinity and t1t2 does not go to zero; therefore,

t1 must go to zero. Suppose we let t2 = f(t1)
t1

, for some function f(t) such

that f(0) > 0. Then, as t1 goes to zero, g(t1, t2) goes to 2
f(0) + f(0). The

exercise asks you to determine how small this limiting quantity can be.

2.5 Solving the GP Problem

The theorem suggests how we might go about solving GP. First, we try
to find a feasible δ∗ that maximizes v(δ). This means we have to find a
positive solution to the system of m + 1 linear equations in n unknowns,
given by

n∑
j=1

δj = 1,

and
n∑
j=1

aijδj = 0,

for i = 1, ...,m, such that v(δ) is maximized. As we shall see, the multiplica-
tive algebraic reconstruction technique (MART) is an iterative procedure
that we can use to find such δ. If there is no such vector, then GP has no
minimizer. Once the desired δ∗ has been found, we set

δ∗j =
uj(t

∗)

v(δ∗)
,

for each j = 1, ..., n, and then solve for the entries of t∗. This last step can
be simplified by taking logs; then we have a system of linear equations to
solve for the values log t∗i .

2.6 Solving the DGP Problem

The iterative multiplicative algebraic reconstruction technique MART
can be used to maximize the function v(δ), subject to linear equality con-
straints, provided that the matrix involved has nonnegative entries. We

Geometric Programming 25

cannot apply the MART yet, because the matrix A does not satisfy these
conditions.

2.6.1 The MART

The Kullback–Leibler, or KL distance [142] between positive numbers
a and b is

KL(a, b) = a log
a

b
+ b− a. (2.11)

We also define KL(a, 0) = +∞ and KL(0, b) = b. Extending the def-
inition in Equation (2.11) to nonnegative vectors a = (a1, ..., aJ)T and
b = (b1, ..., bJ)T , we have

KL(a, b) =

J∑
j=1

KL(aj , bj) =

J∑
j=1

(
aj log

aj
bj

+ bj − aj
)
.

The MART is an iterative algorithm for finding a nonnegative solution of
the system Px = y, for an I by J matrix P with nonnegative entries and
vector y with positive entries. We also assume that the column sums of P
are positive, that is,

sj =

I∑
i=1

Pij > 0,

for all j = 1, ..., J . When discussing the MART, we say that the system
Px = y is consistent when it has nonnegative solutions. We consider two
different versions of the MART.

2.6.2 MART I

Both MART algorithms begin with the selection of a positive starting
vector x0. The iterative step of the first version of MART, which we shall
call MART I, is the following. For k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

(yi
(Pxk)i

)Pij/mi

,

for j = 1, ..., J , where the parameter mi is defined to be

mi = max{Pij |j = 1, ..., J}.

As k → +∞, the MART I sequence {xk} converges, in the consistent case,
to the nonnegative solution of y = Px for which the KL distance KL(x, x0)
is minimized.

26 A First Course in Optimization

2.6.3 MART II

The iterative step of the second version of MART, which we shall call
MART II, is the following. For k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

(yi
(Pxk)i

)Pij/sjni

,

for j = 1, ..., J , where the parameter ni is defined to be

ni = max{Pijs−1j |j = 1, ..., J}.

The MART II algorithm converges, in the consistent case, to the nonneg-
ative solution for which the KL distance

J∑
j=1

sjKL(xj , x
0
j)

is minimized.

2.6.4 Using the MART to Solve the DGP Problem

The entries on the bottom row of A are all one, as is the bottom en-
try of the column vector u, since these entries correspond to the equation∑n
j=1 δj = 1. By adding suitably large positive multiples of this last equa-

tion to the other equations in the system, we obtain an equivalent system,
Bδ = r, for which the new matrix B and the new vector r have only positive
entries. Now we can apply the MART I algorithm to the system Bδ = r,
letting I = m + 1, J = n, P = B, sj =

∑m+1
i=1 Bij , for j = 1, ..., n, δ = x,

x0 = c and y = r. In the consistent case, the MART I algorithm will find
the nonnegative solution that minimizes KL(x, x0), so we select x0 = c.
Then the MART I algorithm finds the nonnegative δ∗ satisfying Bδ∗ = r,
or, equivalently, Aδ∗ = u, for which the KL distance

KL(δ, c) =

n∑
j=1

(
δj log

δj
cj

+ cj − δj
)

is minimized. Since we know that

n∑
j=1

δj = 1,

it follows that minimizing KL(δ, c) is equivalent to maximizing v(δ). Using
δ∗, we find the optimal t∗ solving the GP problem.

Geometric Programming 27

For example, the linear system of equations Aδ = u corresponding to
the posynomial in Equation (2.1) is

Aδ = u =

−1 1 1 0
−1 0 1 1
−1 1 0 1
1 1 1 1

δ1
δ2
δ3
δ4

 =

0
0
0
1

 . (2.12)

Adding two times the last row to the other rows, the system becomes

Bδ = r =

1 3 3 2
1 2 3 3
1 3 2 3
1 1 1 1

δ1
δ2
δ3
δ4

 =

2
2
2
1

 . (2.13)

The matrix B and the vector r are now positive. We are ready to apply
the MART to the system in Equation (2.13).

The MART iteration is as follows. With i = k(mod (m+ 1)) + 1, mi =
max {Bij |j = 1, 2, ..., n} and k = 0, 1, ..., let

δk+1
j = δkj

(ri
(Bδk)i

)m−1
i Bij

.

Using the MART, beginning with δ0 = c, we find that the optimal δ∗ is
δ∗ = (0.4, 0.2, 0.2, 0.2)T . Now we find v(δ∗), which, by Theorem 2.1, equals
g(t∗).

We have

v(δ∗) =
(40

0.4

)0.4(20

0.2

)0.2(10

0.2

)0.2(40

0.2

)0.2
,

so that, after a little arithmetic, we discover that v(δ∗) = g(t∗) = 100; the
lowest cost is one hundred dollars.

Using Equation (2.9) for i = 1, ..., 4, we have

u1(t∗) =
40

t∗1t
∗
2t
∗
3

= 100δ∗1 = 40,

u2(t∗) = 20t∗1t
∗
3 = 100δ∗2 = 20,

u3(t∗) = 10t∗1t
∗
2 = 100δ∗3 = 20,

and
u4(t∗) = 40t∗2t

∗
3 = 100δ∗4 = 20.

Again, a little arithmetic reveals that t∗1 = 2, t∗2 = 1, and t∗3 = 0.5. Here we
were able to solve the system of nonlinear equations fairly easily. Generally,
however, we will need to take logarithms of both sides of each equation,
and then solve the resulting system of linear equations for the unknowns
x∗i = log t∗i .

28 A First Course in Optimization

2.7 Constrained Geometric Programming

Consider now the following variant of the problem of transporting the
gravel across the river. Suppose that the bottom and the two sides will
be constructed for free from scrap metal, but only four square yards are
available. The cost function to be minimized becomes

g0(t) =
40

t1t2t3
+ 40t2t3,

and the constraint is

g1(t) =
t1t3

2
+
t1t2

4
≤ 1.

With δ1 > 0, δ2 > 0, and δ1 + δ2 = 1, we write

g0(t) = δ1
40

δ1t1t2t3
+ δ2

40t2t3
δ2

.

Since 0 ≤ g1(t) ≤ 1, we have

g0(t) ≥
(
δ1

40

δ1t1t2t3
+ δ2

40t2t3
δ2

)(
g1(t)

)λ
,

for any positive λ. The GAGM Inequality then tells us that

g0(t) ≥

((40

δ1t1t2t3

)δ1(40t2t3
δ2

)δ2)(
g1(t)

)λ
,

so that

g0(t) ≥

((40

δ1

)δ1(40

δ2

)δ2)
t−δ11 tδ2−δ12 tδ2−δ13

(
g1(t)

)λ
. (2.14)

From the GAGM Inequality, we also know that, for δ3 > 0, δ4 > 0 and
λ = δ3 + δ4,

(
g1(t)

)λ
≥ (λ)λ

((1

2δ3

)δ3(1

4δ4

)δ4)
tδ3+δ41 tδ42 t

δ3
3 . (2.15)

Combining the inequalities in (2.14) and (2.15), and writing δ =
(δ1, δ2, δ3, δ4), we obtain

g0(t) ≥ v(δ)t−δ1+δ3+δ41 t−δ1+δ2+δ42 t−δ1+δ2+δ33 ,

Geometric Programming 29

with

v(δ) =
(40

δ1

)δ1(40

δ2

)δ2(1

2δ3

)δ3(1

4δ4

)δ4(
δ3 + δ4

)δ3+δ4
.

If we can find a positive vector δ with

δ1 + δ2 = 1,

−δ1 + δ3 + δ4 = 0,

−δ1 + δ2 + δ4 = 0

−δ1 + δ2 + δ3 = 0, (2.16)

then
g0(t) ≥ v(δ).

In this particular case, there is a unique positive δ satisfying the equations
(2.16), namely

δ∗1 =
2

3
, δ∗2 =

1

3
, δ∗3 =

1

3
, and δ∗4 =

1

3
,

and
v(δ∗) = 60.

Therefore, g0(t) is bounded below by 60. If there is t∗ such that

g0(t∗) = 60,

then we must have
g1(t∗) = 1,

and equality in the GAGM Inequality. Consequently,

3

2

40

t∗1t
∗
2t
∗
3

= 3(40t∗2t
∗
3) = 60,

and
3

2
t∗1t
∗
3 =

3

4
t∗1t
∗
2 = K.

Since g1(t∗) = 1, we must have K = 3
2 . We solve these equations by taking

logarithms, to obtain the solution

t∗1 = 2, t∗2 = 1, and t∗3 =
1

2
.

The change of variables ti = exi converts the constrained GP problem
into a constrained convex programming problem. The theory of the con-
strained GP problem can then be obtained as a consequence of the theory
for the convex problem, which we shall consider in Chapter 10.

30 A First Course in Optimization

2.8 Exercises

Ex. 2.1 Show that there is no solution to the problem of minimizing the
function

g(t1, t2) =
2

t1t2
+ t1t2 + t1,

over t1 > 0, t2 > 0. Can g(t1, t2) ever be smaller than 2
√

2?

Ex. 2.2 Minimize the function

g(t1, t2) =
1

t1t2
+ t1t2 + t1 + t2,

over t1 > 0, t2 > 0. This will require some iterative numerical method for
solving equations.

Ex. 2.3 Program the MART algorithm and use it to verify the assertions
made previously concerning the solutions of the two numerical examples.

Chapter 3

Basic Analysis

3.1 Chapter Summary . 31
3.2 Minima and Infima . 31
3.3 Limits . 32
3.4 Completeness . 34
3.5 Continuity . 36
3.6 Limsup and Liminf . 36
3.7 Another View . 38
3.8 Semi-Continuity . 39
3.9 Exercises . 39

3.1 Chapter Summary

The theory and practice of continuous optimization relies heavily on the
basic notions and tools of real analysis. In this chapter we review important
topics from analysis that we shall need later.

3.2 Minima and Infima

When we say that we seek the minimum value of a function f(x) over
x within some set C we imply that there is a point z in C such that
f(z) ≤ f(x) for all x in C. Of course, this need not be the case. For
example, take the function f(x) = x defined on the real numbers and C
the set of positive real numbers. In such cases, instead of looking for the
minimum of f(x) over x in C, we may seek the infimum or greatest lower
bound of the values f(x), over x in C.

Definition 3.1 We say that a number α is the infimum of a subset S of
R, abbreviated α = inf (S), or the greatest lower bound of S, abbreviated
α = glb (S), if two conditions hold:

31

32 A First Course in Optimization

(1) α ≤ s, for all s in S; and

(2) if t ≤ s for all s in S, then t ≤ α.

Definition 3.2 We say that a number β is the supremum of a subset S
in R, abbreviated β = sup (S), or the least upper bound of S, abbreviated
β = lub (S), if two conditions hold:

(1) β ≥ s, for all s in S; and

(2) if t ≥ s for all s in S, then t ≥ β.

In our example of f(x) = x and C as the set of positive real numbers,
let S = {f(x)|x ∈ C}. Then the infimum of S is α = 0, although there is
no s in S for which s = 0. Whenever there is a point z in C with α = f(z),
then f(z) is both the infimum and the minimum of f(x) over x in C.

3.3 Limits

We begin with the basic definitions pertaining to limits. Concerning
notation, we denote by x a member of RJ , so that, for J = 1, x will denote
a real number. Members x of RJ will always be thought of as column
vectors, so that xT , the transpose of x, is a row vector. Entries of an x in
RJ we denote by xj , so xj will always denote a real number; in contrast,
xk will denote a member of RJ , with entries xkj .

For a vector x in RJ we shall denote by ‖x‖ an arbitrary norm. The
notation ‖x‖2 will always refer to the two-norm of a vector x; that is,

‖x‖2 =

√√√√ J∑
j=1

|xj |2.

The two-norm of x is the Euclidean distance from the point x to the origin,
or, equivalently, the length of the directed line segment from the origin to
x. Associated with the two-norm is the inner product

〈x, y〉 =

J∑
j=1

xjyj .

We sometimes write the inner product as a dot product or using matrix
multiplication:

〈x, y〉 = x · y = xT y.

Basic Analysis 33

Note that
‖x‖22 = 〈x, x〉.

The two-norm is not the only interesting norm on RJ , though. Another
one is the one-norm,

‖x‖1 =

J∑
j=1

|xj |.

Any norm is a generalization of the notion of absolute value of a real
number; for any real number x we can view |x| as the distance from x to 0.
For real numbers x and z, |x− z| is the distance from x to z. For points x
and z in RJ , ‖x− z‖ should be viewed as the distance from the point x to
the point z, or, equivalently, the length of the directed line segment from
z to x; each norm defines a different notion of distance.

In the definitions that follow we use an arbitrary norm on RJ . The
reason for this is that these definitions are independent of the particular
norm used. A sequence is bounded, Cauchy, or convergent with respect to
one norm if and only if it is the same with respect to any norm. Similarly, a
function is continuous with respect to one norm if and only if it is continuous
with respect to any other norm.

Definition 3.3 A sequence {xn|n = 1, 2, ...}, xn ∈ RJ , is said to converge
to z ∈ RJ , or have limit z if, given any ε > 0, there is N = N(ε), usually
depending on ε, such that

‖xn − z‖ ≤ ε,

whenever n ≥ N(ε).

Definition 3.4 A sequence {xn} in RJ is bounded if there is a constant
B such that ‖xn‖ ≤ B, for all n.

It is convenient to extend the notion of limit of a sequence of real
numbers to include the infinities.

Definition 3.5 A sequence of real numbers {xn|n = 1, 2, ...} is said to
converge to +∞ if, given any b > 0, there is N = N(b), usually depending
on b, such that xn ≥ b, whenever n ≥ N(b). A sequence of real numbers
{xn|n = 1, 2, ...} is said to converge to −∞ if the sequence {−xn} converges
to +∞.

Definition 3.6 Let f : RJ → RM . We say that z ∈ RM is the limit of
f(x), as x → a in RJ , if, for every sequence {xn} converging to a, with
xn 6= a for all n, the sequence {f(xn)} in RM converges to z. We then
write

z = lim
x→a

f(x).

For M = 1, we allow z to be infinite.

34 A First Course in Optimization

Definition 3.7 A subset C of RJ is bounded if there is a positive number
B such that ‖x‖ ≤ B, for all x in C. A subset C is closed if, whenever
there is a sequence {xn|n = 1, 2, ...}, with each xn in C and the sequence
converging to x, the vector x is also in C.

3.4 Completeness

One version of the axiom of completeness for the set of real numbers
R is that every nonempty subset of R that is bounded above has a least
upper bound, or, equivalently, every nonempty subset of R that is bounded
below has a greatest lower bound. The notion of completeness is usually
not emphasized in beginning calculus courses and encountered for the first
time in a real analysis course. But without completeness, many of the fun-
damental theorems in calculus would not hold. If we tried to do calculus by
considering only rational numbers, the intermediate value theorem would
not hold, and it would be possible for a differentiable function to have a
positive derivative without being increasing.

To further illustrate the importance of completeness, consider the proof
of the following proposition.

Proposition 3.1 The sequence { 1n} converges to zero, as n→ +∞.

Suppose we attempt to prove this proposition simply by applying the def-
inition of the limit of a sequence. Let ε > 0 be given. Select a positive
integer N with N > 1

ε . Then, whenever n ≥ N , we have

| 1
n
− 0| = 1

n
≤ 1

N
< ε.

This would seem to complete the proof of the proposition. But it is incor-
rect. The flaw in the argument is in the choice of N . We do not yet know
that we can select N with N > 1

ε , since this is equivalent to 1
N < ε. Until

we know that the proposition is true, we do not know that we can make 1
N

as small as desired by the choice of N . The proof requires completeness.
Let S be the set {1, 12 ,

1
3 ,

1
4 , ...}. This set is nonempty and bounded

below by any negative real number. Therefore, by completeness, S has a
greatest lower bound; call it L. It is not difficult to prove that the decreasing
sequence { 1n} must then converge to L, and the subsequence { 1

2n} must
also converge to L. But since the limit of a product is the product of the
limits, whenever all the limits exist, we also know that the sequence { 1

2n}
converges to L

2 . Therefore, L = L
2 , and L = 0 must follow. Now the proof

is complete.

Basic Analysis 35

The rational number line has “holes” in it that the irrational numbers
fill; in this sense, the completeness of the real numbers is sometimes char-
acterized by saying that it has no holes in it. But the completeness of the
reals actually tells us other things about the structure of the real numbers.
We know, for example, that there are no rational numbers that are larger
than all the positive integers. But can there be irrational numbers that are
larger than all the positive integers? Completeness tells us that the answer
is no.

Corollary 3.1 There is no real number larger than all the positive integers.

Proof: Suppose, to the contrary, that there is a real number b such that
b > n, for all positive integers n. Then 0 < 1

b <
1
n , for all positive integers n.

But this cannot happen, since, by the previous proposition, { 1n} converges
to zero.

Notice that, if we restrict ourselves to the world of rational numbers
when we define the concept of limit of a sequence, then we must also restrict
the ε to the rationals; suppose we call this the “rational limit.”When we
do this, we can show that the sequence { 1n} converges to zero. What we
have really shown with the proposition and corollary above is that, if a
sequence of rational numbers converges to a rational number, in the sense
of the “rational limit,”then it converges to that rational number in the
usual sense as well.

For the more general spaces RJ completeness is expressed, for example,
by postulating that every Cauchy sequence is a convergent sequence.

Definition 3.8 A sequence {xn} of vectors in RJ is called a Cauchy se-
quence if, for every ε > 0 there is a positive integer N = N(ε), usu-
ally depending on ε, such that, for all m and n greater than N , we have
‖xn − xm‖ < ε.

Every convergent sequence in RJ is bounded and is a Cauchy sequence.
The Bolzano–Weierstrass Theorem tells us that every bounded sequence in
RJ has a convergent subsequence; this is equivalent to the completeness of
the metric space RJ .

Theorem 3.1 (The Bolzano–Weierstrass Theorem) Let {xn} be a
bounded sequence of vectors in RJ . Then {xn} has a convergent subse-
quence.

As we shall see, the Bolzano–Weierstrass Theorem plays an important role
in proving convergence of iterative methods.

36 A First Course in Optimization

3.5 Continuity

A basic notion in analysis is that of a continuous function. Although we
shall be concerned primarily with functions whose values are real numbers,
we can define continuity for functions whose values lie in RM .

Definition 3.9 We say the function f : RJ → RM is continuous at x = a
if

f(a) = lim
x→a

f(x).

A basic theorem in real analysis is the following:

Theorem 3.2 Let f : RJ → R be continuous and let C be nonempty,
closed, and bounded. Then there are a and b in C with f(a) ≤ f(x) and
f(b) ≥ f(x), for all x in C.

We give some examples:

(1) The function f(x) = x is continuous and the set C = [0, 1] is
nonempty, closed and bounded. The minimum occurs at x = 0 and
the maximum occurs at x = 1.

(2) The set C = (0, 1] is not closed. The function f(x) = x has no
minimum value on C, but does have a maximum value f(1) = 1.

(3) The set C = (−∞, 0] is not bounded and f(x) = x has no minimum
value on C. Note also that f(x) = x has no finite infimum with
respect to C.

Definition 3.10 Let f : D ⊆ RJ → R. For any real α, the level set of f
corresponding to α is the set {x|f(x) ≤ α}.

Proposition 3.2 (Weierstrass) Suppose that f : D ⊆ RJ → R is con-
tinuous, where D is nonempty and closed, and that every level set of f is
bounded. Then f has a global minimizer.

Proof: This is a standard application of the Bolzano–Weierstrass Theorem.

3.6 Limsup and Liminf

Some of the functions we shall be interested in may be discontinuous
at some points. For that reason, it is common in optimization to consider

Basic Analysis 37

semi-continuity, which is weaker than continuity. While continuity involves
limits, semi-continuity involves superior and inferior limits.

We know that a real-valued function f(x) : RJ → R is continuous at
x = a if, given any ε > 0, there is a δ > 0 such that ‖x − a‖ < δ implies
that |f(x)− f(a)| < ε. We then write

f(a) = lim
x→a

f(x).

We can generalize this notion as follows.

Definition 3.11 We say that a finite real number β is the superior limit
or lim sup of f(x), as x approaches a, written β = lim supx→a f(x) if,

(1) for every ε > 0, there is δ > 0 such that, for every x satisfying
‖x− a‖ < δ, we have f(x) < β + ε, and

(2) for every ε > 0 and δ > 0 there is x with ‖x−a‖ < δ and f(x) > β−ε.

Definition 3.12 We say that a finite real number α is the inferior limit
or lim inf of f(x), as x approaches a, written α = lim infx→a f(x) if,

(1) for every ε > 0, there is δ > 0 such that, for every x satisfying
‖x− a‖ < δ, we have f(x) > α− ε, and

(2) for every ε > 0 and δ > 0 there is x with ‖x−a‖ < δ and f(x) < α+ε.

We leave it as Exercise 3.4 for the reader to show that α =
lim infx→a f(x) is the largest real number γ with the following property:
for every ε > 0, there is δ > 0 such that, if ‖x− a‖ < δ, then f(x) > γ − ε.

Definition 3.13 We say that β = +∞ is the superior limit or lim sup of
f(x), as x approaches a, written +∞ = lim supx→a f(x) if, for every B > 0
and δ > 0 there is x with ‖x− a‖ < δ and f(x) > B.

Definition 3.14 We say that α = −∞ is the inferior limit or lim inf of
f(x), as x approaches a, written −∞ = lim infx→a f(x) if, for every B > 0
and δ > 0, there is x with ‖x− a‖ < δ and f(x) < −B.

It follows from the definitions that α ≤ f(a) ≤ β.
For example, suppose that a = 0, f(x) = 0, for x 6= 0, and f(0) = 1.

Then β = 1 and α = 0. If a = 0, f(x) = −1/x for x < 0 and f(x) = 1/x
for x > 0, then α = −∞ and β = +∞.

It is not immediately obvious that β and α always exist. The next
section provides another view of these notions, from which it becomes clear
that the existence of β and α is a consequence of the completeness of the
space R.

38 A First Course in Optimization

3.7 Another View

We can define the superior and inferior limits in terms of sequences. We
leave it to the reader to show that these definitions are equivalent to the
ones just given.

Let f : RJ → R and a be fixed in RJ . Let L be the set consisting of
all γ, possibly including the infinities, having the property that there is a
sequence {xn} in RJ converging to a such that {f(xn)} converges to γ. It is
convenient, now, to permit the sequence xn = a for all n, so that γ = f(a)
is in L and L is never empty. Therefore, we always have

−∞ ≤ inf(L) ≤ f(a) ≤ sup(L) ≤ +∞.

For example, let f(x) = 1/x for x 6= 0, f(0) = 0, and a = 0. Then
L = {−∞, 0,+∞}, inf(L) = −∞, and sup(L) = +∞.

Definition 3.15 The (possibly infinite) number inf(L) is called the inferior
limit or lim inf of f(x), as x → a in RJ . The (possibly infinite) number
sup(L) is called the superior limit or lim sup of f(x), as x→ a in RJ .

It follows from these definitions and our previous discussion that

lim inf
x→a

f(x) ≤ f(a) ≤ lim sup
x→a

f(x).

For example, let f(x) = x for x < 0 and f(x) = x+ 1 for x > 0. Then
we have

lim sup
x→0

f(x) = 1,

and
lim inf
x→0

f(x) = 0.

Proposition 3.3 The inferior limit and the superior limit are in the set
L.

Proof: We leave the proof as Exercise 3.6.

The function doesn’t have to be defined at a point in order for the
lim sup and lim inf to be defined there. If f : (0, δ) → R, for some δ > 0,
we have the following definitions:

lim sup
t↓0

f(t) = lim
t↓0

(
sup{f(x)|0 < x < t}

)
,

and
lim inf
t↓0

f(t) = lim
t↓0

(
inf{f(x)|0 < x < t}

)
.

Basic Analysis 39

3.8 Semi-Continuity

We know that α ≤ f(a) ≤ β. We can generalize the notion of continuity
by replacing the limit with the inferior or superior limit. When M = 1, f(x)
is continuous at x = a if and only if

lim inf
x→a

f(x) = lim sup
x→a

f(x) = f(a).

Definition 3.16 We say that f : RJ → R is lower semi-continuous (LSC)
at x = a if

f(a) = α = lim inf
x→a

f(x).

Definition 3.17 We say that f : RJ → R is upper semi-continuous (USC)
at x = a if

f(a) = β = lim sup
x→a

f(x).

Note that, if f(x) is LSC (USC) at x = a, then f(x) remains LSC (USC)
when f(a) is replaced by any lower (higher) value. See Exercise 3.3 for an
equivalent definition of lower semi-continuity.

The following theorem of Weierstrass extends Theorem 3.2 and shows
the importance of lower semi-continuity for minimization problems.

Theorem 3.3 Let f : RJ → R be LSC and let C be nonempty, closed, and
bounded. Then there is a in C with f(a) ≤ f(x), for all x in C.

3.9 Exercises

Ex. 3.1 Let S and T be nonempty subsets of the real line, with s ≤ t for
every s in S and t in T . Prove that lub(S) ≤ glb(T).

Ex. 3.2 Let f(x, y) : R2 → R, and, for each fixed y, let infx f(x, y) denote
the greatest lower bound of the set of numbers {f(x, y)|x ∈ R}. Show that

inf
x

(
inf
y
f(x, y)

)
= inf

y

(
inf
x
f(x, y)

)
.

Hint: Note that
inf
y
f(x, y) ≤ f(x, y),

for all x and y.

40 A First Course in Optimization

Ex. 3.3 Prove that f : RJ → R is lower semi-continuous at x = a if and
only if, for every ε > 0, there is δ > 0 such that ‖x − a‖ < δ implies that
f(x) > f(a)− ε.

Ex. 3.4 Show that γ = α = lim infx→a f(x) is the largest real number γ
with the following property: for every ε > 0, there is δ > 0 such that, if
‖x− a‖ < δ, then f(x) > γ − ε.

Ex. 3.5 Consider the function f(x) defined by f(x) = e−x, for x > 0 and
by f(x) = −ex, for x < 0. Show that

−1 = lim inf
x→0

f(x)

and
1 = lim sup

x→0
f(x).

Ex. 3.6 For n = 1, 2, ..., let

An =
{
x| ‖x− a‖ ≤ 1

n

}
,

and let αn and βn be defined by

αn = inf
{
f(x)|x ∈ An

}
,

and
βn = sup

{
f(x)|x ∈ An

}
.

(a) Show that the sequence {αn} is increasing, bounded above by f(a) and
converges to some α, while the sequence {βn} is decreasing, bounded
below by f(a) and converges to some β. Hint: Use the fact that, if A ⊆
B, where A and B are sets of real numbers, then inf(A) ≥ inf(B).

(b) Show that α and β are in L. Hint: Prove that there is a sequence
{xn} with xn in An and f(xn) ≤ αn + 1

n .

(c) Show that, if {xm} is any sequence converging to a, then there is a
subsequence, denoted {xmn}, such that xmn is in An, for each n.

(d) Show that, if {f(xm)} converges to γ, then

αn ≤ f(xmn) ≤ βn,

so that
α ≤ γ ≤ β.

(e) Show that
α = lim inf

x→a
f(x)

and
β = lim sup

x→a
f(x).

Chapter 4

Convex Sets

4.1 Chapter Summary . 41
4.2 The Geometry of Real Euclidean Space . 41

4.2.1 Inner Products . 42
4.2.2 Cauchy’s Inequality . 43
4.2.3 Other Norms . 43

4.3 A Bit of Topology . 43
4.4 Convex Sets in RJ . 45

4.4.1 Basic Definitions . 45
4.4.2 Orthogonal Projection onto Convex Sets 49

4.5 More on Projections . 52
4.6 Linear and Affine Operators on RJ . 53
4.7 The Fundamental Theorems . 54

4.7.1 Basic Definitions . 54
4.7.2 The Separation Theorem . 55
4.7.3 The Support Theorem . 55

4.8 Block-Matrix Notation . 57
4.9 Theorems of the Alternative . 58
4.10 Another Proof of Farkas’ Lemma . 62
4.11 Gordan’s Theorem Revisited . 64
4.12 Exercises . 66

4.1 Chapter Summary

Convex sets and convex functions play important roles in optimization.
In this chapter we survey the basic facts concerning convex sets, beginning
with the geometry and topology of RJ . We then define convex functions
in terms of convex sets. We close with several Theorems of the Alternative
concerning linear inequalities.

41

42 A First Course in Optimization

4.2 The Geometry of Real Euclidean Space

We denote by RJ the real Euclidean space consisting of all J-
dimensional column vectors x = (x1, ..., xJ)T with real entries xj ; here the
superscript T denotes the transpose of the 1 by J matrix (or, row vector)
(x1, ..., xJ).

4.2.1 Inner Products

For x = (x1, ..., xJ)T and y = (y1, ..., yJ)T in RJ , the dot product x · y
is defined to be

x · y =

J∑
j=1

xjyj .

Note that we can write

x · y = yTx = xT y,

where juxtaposition indicates matrix multiplication. The 2-norm, or Eu-
clidean norm, or Euclidean length, of x is

||x||2 =
√
x · x =

√
xTx.

The Euclidean distance between two vectors x and y in RJ is ||x− y||2.
The space RJ , along with its dot product, is an example of a finite-

dimensional Hilbert space.

Definition 4.1 Let V be a real vector space. The scalar-valued function
〈u, v〉 is called an inner product on V if the following four properties hold,
for all u, w, and v in V, and all real c:

〈u+ w, v〉 = 〈u, v〉+ 〈w, v〉;
〈cu, v〉 = c〈u, v〉;
〈v, u〉 = 〈u, v〉; and

〈u, u〉 ≥ 0, (4.1)

with equality in (4.1) if and only if u = 0.

The dot product of vectors is an example of an inner product. The prop-
erties of an inner product are precisely the ones needed to prove Cauchy’s
Inequality, which then holds for any inner product. We shall favor the dot
product notation u · v for the inner product of vectors, although we shall
occasionally use the matrix multiplication form, vTu or the inner product
notation 〈u, v〉.

Convex Sets 43

4.2.2 Cauchy’s Inequality

Cauchy’s Inequality, also called the Cauchy–Schwarz Inequality, tells us
that

|〈x, y〉| ≤ ||x||2||y||2,

with equality if and only if y = αx, for some scalar α. The Cauchy–Schwarz
Inequality holds for any inner product. We say that the vectors x and y are
mutually orthogonal if 〈x, y〉 = 0. An alternative approach to orthogonality
is presented in Exercise 4.1.

A simple application of Cauchy’s inequality gives us

||x+ y||2 ≤ ||x||2 + ||y||2, (4.2)

with equality if and only if one of the vectors is a nonnegative multiple of
the other one; the inequality in (4.2) is called the Triangle Inequality.

The Parallelogram Law is an easy consequence of the definition of the
2-norm:

||x+ y||22 + ||x− y||22 = 2||x||22 + 2||y||22. (4.3)

It is important to remember that Cauchy’s Inequality and the Parallelo-
gram Law in Equation (4.3) hold only for the 2-norm. One consequence of
the Parallelogram Law that we shall need later is the following: if x 6= y
and ‖x‖2 = ‖y‖2 = d, then ‖ 12 (x+ y)‖2 < d. (Draw a picture!)

4.2.3 Other Norms

The two-norm is the most important, but not the only, norm on the
space RJ that we study; we shall also be interested in the one-norm (see
Exercise 4.5). The purely topological results we discuss in the next section
are independent of the choice of norm on RJ , and we shall remind the reader
of this by using the notation ‖x‖ to denote an arbitrary norm. Theorems
concerning orthogonal projection hold only for the two-norm, which we
shall denote by ‖x‖2. In fact, whenever we use the word “orthogonal,” we
shall imply that we are speaking about the two-norm. There have been
attempts to define orthogonality in the absence of an inner product, and
so for other norms, but the theory here is not as successful.

4.3 A Bit of Topology

Having a norm allows us to define the distance between two points x
and y in RJ as ||x − y||. Being able to talk about how close points are

44 A First Course in Optimization

to each other enables us to define continuity of functions on RJ and to
consider topological notions of closed set, open set, interior of a set and
boundary of a set. None of these notions depend on the particular norm
we are using.

Definition 4.2 A subset B of RJ is closed if, whenever xk is in B for
each nonnegative integer k and ||x−xk|| → 0, as k → +∞, then x is in B.

For example, B = [0, 1] is closed as a subset of R, but B = (0, 1) is not.

Definition 4.3 We say that d ≥ 0 is the distance from the point x to the
set B if, for every ε > 0, there is bε in B, with ||x− bε|| < d+ ε, and no b
in B with ||x− b|| < d.

The Euclidean distance from the point 0 in R to the set (0, 1) is zero, while
its distance to the set (1, 2) is one. It follows easily from the definitions
that, if B is closed and d = 0, then x is in B.

Definition 4.4 The closure of a set B is the set of all points x whose
distance from B is zero.

The closure of the interval B = (0, 1) is [0, 1].

Definition 4.5 A subset U of RJ is open if its complement, the set of all
points not in U , is closed.

Definition 4.6 Let C be a subset of RJ . A point x in C is said to be
an interior point of set C if there is ε > 0 such that every point z with
||x− z|| < ε is in C. The interior of the set C, written int(C), is the set of
all interior points of C. It is also the largest open set contained within C.

For example, the open interval (0, 1) is the interior of the intervals (0, 1]
and [0, 1]. A set C is open if and only if C = int(C).

Definition 4.7 A point x in RJ is said to be a boundary point of set C
if, for every ε > 0, there are points yε in C and zε not in C, both depending
on the choice of ε, with ||x − yε|| < ε and ||x − zε|| < ε. The boundary of
C is the set of all boundary points of C. It is also the intersection of the
closure of C with the closure of its complement.

For example, the points x = 0 and x = 1 are boundary points of the set
(0, 1].

Definition 4.8 For k = 0, 1, 2, ..., let xk be a vector in RJ . The sequence
of vectors {xk} is said to converge to the vector z if, given any ε > 0, there
is positive integer n, usually depending on ε, such that, for every k > n,
we have ||z − xk|| ≤ ε. Then we say that z is the limit of the sequence.

Convex Sets 45

For example, the sequence {xk = 1
k+1} in R converges to z = 0. The

sequence {(−1)k} alternates between 1 and −1, so does not converge. How-
ever, the subsequence associated with odd k converges to z = −1, while the
subsequence associated with even k converges to z = 1. The values z = −1
and z = 1 are called subsequential limit points, or, sometimes, cluster points
of the sequence.

Definition 4.9 A sequence {xk} of vectors in RJ is said to be bounded if
there is a constant b > 0, such that ||xk|| ≤ b, for all k.

A fundamental result in analysis is the following.

Proposition 4.1 Every convergent sequence of vectors in RJ is bounded.
Every bounded sequence of vectors in RJ has at least one convergent sub-
sequence, therefore, has at least one cluster point.

4.4 Convex Sets in RJ

In preparation for our discussion of linear and nonlinear programming,
we consider some of the basic concepts from the geometry of convex sets.

4.4.1 Basic Definitions

We begin with the basic definitions.

Definition 4.10 A vector z is said to be a convex combination of the
vectors x and y if there is α in the interval [0, 1] such that z = (1−α)x+αy.
More generally, a vector z is a convex combination of the vectors xn, n =
1, ..., N , if there are numbers αn ≥ 0 with

α1 + ...+ αN = 1

and
z = α1x

1 + ...+ αNx
N .

Definition 4.11 A nonempty set C in RJ is said to be convex if, for any
distinct points x and y in C, and for any real number α in the interval
(0, 1), the point (1 − α)x + αy is also in C; that is, C is closed to convex
combinations of any two members of C.

46 A First Course in Optimization

In Exercise 4.2 you are asked to show that if C is convex then the convex
combination of any number of members of C is again in C. We say then
that C is closed to convex combinations.

For example, the two-norm unit ball B in RJ , consisting of all x with
||x||2 ≤ 1, is convex, while the surface of the ball, the set of all x with
||x||2 = 1, is not convex. More generally, the unit ball of RJ in any norm
is a convex set, as a consequence of the triangle inequality for norms.

Definition 4.12 The convex hull of a set S, denoted conv(S), is the small-
est convex set containing S, by which we mean that if K is any convex set
containing S, then K must also contain conv(S).

One weakness of this definition is that it does not tell us explicitly what the
members of conv(S) look like, nor precisely how the individual members
of conv(S) are related to the members of S itself. In fact, it is not obvious
that a smallest such set exists at all. The following proposition remedies
this; the reader is asked to supply a proof in Exercise 4.3 later.

Proposition 4.2 The convex hull of a set S is the set C of all convex
combinations of members of S.

Definition 4.13 A subset S of RJ is a subspace if, for every x and y in
S and scalars α and β, the linear combination αx+ βy is again in S.

A subspace is necessarily a convex set.

Definition 4.14 The orthogonal complement of a subspace S of RJ , en-
dowed with the two-norm, is the set

S⊥ = {u|〈u, s〉 = u · s = uT s = 0, for every s ∈ S},

the set of all vectors u in RJ that are orthogonal to every member of S.

For example, in R3, the x, y-plane is a subspace and has for its orthog-
onal complement the z-axis.

Definition 4.15 A subset M of RJ is a linear manifold if there is a sub-
space S and a vector b such that

M = S + b = {x|x = s+ b, for some s inS}.

Any linear manifold is convex.

Definition 4.16 For a fixed column vector a with Euclidean length one
and a fixed scalar γ the hyperplane determined by a and γ is the set

H(a, γ) = {z|〈a, z〉 = γ}.

Convex Sets 47

The hyperplanes H(a, γ) are linear manifolds, and the hyperplanes
H(a, 0) are subspaces. Hyperplanes in RJ are naturally associated with lin-
ear equations in J variables; with a = (a1, ..., aJ)T , the hyperplane H(a, γ)
is the set of all z = (z1, ..., zJ)T for which

a1z1 + a2z2 + ...+ aJzJ = γ.

Earlier, we mentioned that there are two related, but distinct, ways to
view members of the set RJ . The first is to see x in RJ as a point in
J-dimensional space, so that, for example, if J = 2, then a member x of
R2 can be thought of as a point in a plane, the plane of the blackboard,
say. The second way is to think of x as the directed line segment from the
origin to the point also denoted x. We purposely avoided making a choice
between one interpretation and the other because there are cases in which
we want to employ both interpretations; the definition of the hyperplane
H(a, γ) provides just such a case. We want to think of the members of the
hyperplane as points in RJ that lie within the set H(a, γ), but we want
to think of a as a directed line segment perpendicular, or normal, to the
hyperplane. When x, viewed as a point, is in H(a, γ), the directed line
segment from the origin to x will not lie in the hyperplane, unless γ = 0.

Lemma 4.1 The distance from the hyperplane H(a, γ) to the hyperplane
H(a, γ + 1) is one.

The proof is left as Exercise 4.9.

Definition 4.17 For each vector a with ‖a‖2 = 1 and each scalar γ, the
sets

H+(a, γ) = {z|〈a, z〉 ≥ γ}

H−(a, γ) = {z|〈a, z〉 ≤ γ}

are half-spaces.

Half-spaces in RJ are naturally associated with linear inequalities in J
variables; with a = (a1, ..., aJ)T , the half-space H+(a, γ) is the set of all
z = (z1, ..., zJ)T for which

a1z1 + a2z2 + ...+ aJzJ ≥ γ.

Perhaps the most important convex sets in optimization are the poly-
hedrons:

Definition 4.18 A subset P of RJ is a polyhedron if P is the intersection
of a finite number of half-spaces.

48 A First Course in Optimization

A polyhedron is the set of all vectors that satisfy a finite number of
linear inequalities: the set P in R2 consisting of all vectors (x1, x2) with
x1 ≥ 0, x2 ≥ 0 is an unbounded polyhedron, while the set B in R2 consisting
of all vectors (x1, x2) with x1 ≥ 0, x2 ≥ 0 and x1 + x2 ≤ 1 is a bounded
polyhedron. The set B is also the convex hull of a finite set of points, namely
the three points (0, 0), (1, 0) and (0, 1), and therefore is also a polytope.

Definition 4.19 Given a subset C of RJ , the affine hull of C, denoted
aff(C), is the smallest linear manifold containing C.

For example, let C be the line segment connecting the two points (0, 1)
and (1, 2) in R2. The affine hull of C is the straight line whose equation is
y = x+ 1.

Definition 4.20 The dimension of a subset of RJ is the dimension of its
affine hull, which is the dimension of the subspace of which it is a translate.

The set C above has dimension one. A set containing only one point is its
own affine hull, since it is a translate of the subspace {0}.

In R2, the line segment connecting the points (0, 1) and (1, 2) has no
interior; it is a one-dimensional subset of a two-dimensional space and can
contain no two-dimensional ball. But, the part of this set without its two
end points is a sort of interior, called the relative interior.

Definition 4.21 The relative interior of a subset C of RJ , denoted ri(C),
is the interior of C, as defined by considering C as a subset of its affine
hull.

Since a set consisting of a single point is its own affine hull, it is its own
relative interior.

Definition 4.22 A point x in a convex set C is said to be an extreme
point of C if the set obtained by removing x from C remains convex.

Said another way, x ∈ C is an extreme point of C if x is not a convex
combination of two other points in C; that is, x cannot be written as

x = (1− α)y + αz,

for y and z in C, y, z 6= x and α ∈ (0, 1). For example, the point x = 1 is
an extreme point of the convex set C = [0, 1]. Every point on the boundary
of a sphere in RJ is an extreme point of the sphere. The set of all extreme
points of a convex set is denoted Ext(C).

Definition 4.23 A non-zero vector d is said to be a direction of unbound-
edness of a convex set C if, for all x in C and all γ ≥ 0, the vector x+ γd
is in C.

Convex Sets 49

For example, if C is the nonnegative orthant in RJ , then any nonnegative
vector d is a direction of unboundedness.

Definition 4.24 A vector a is normal to a convex set C at the point s in
C if

〈a, c− s〉 ≤ 0,

for all c in C.

Definition 4.25 Let C be convex and s in C. The normal cone to C at s,
denoted NC(s), is the set of all vectors a that are normal to C at s.

Normality and the normal cone are notions that make sense only in a
space with an inner product, so are implicitly connected to the two-norm.

4.4.2 Orthogonal Projection onto Convex Sets

The following proposition is fundamental in the study of convexity and
can be found in most books on the subject; see, for example, the text by
Goebel and Reich [118].

Proposition 4.3 Given any nonempty closed convex set C and an arbi-
trary vector x in RJ , there is a unique member PCx of C closest, in the
sense of the two-norm, to x. The vector PCx is called the orthogonal (or
metric) projection of x onto C and the operator PC the orthogonal projec-
tion onto C.

Proof: If x is in C, then PCx = x, so assume that x is not in C. Then
d > 0, where d is the distance from x to C. For each positive integer n,
select cn in C with ||x− cn||2 < d+ 1

n . Then, since for all n we have

‖cn‖2 = ‖cn − x+ x‖2 ≤ ‖cn − x‖2 + ‖x‖2 ≤ d+
1

n
+ ‖x‖2 < d+ 1 + ‖x‖2,

the sequence {cn} is bounded; let c∗ be any cluster point. It follows easily
that ||x − c∗||2 = d and that c∗ is in C. If there is any other member c
of C with ||x − c||2 = d, then, by the Parallelogram Law, we would have
||x− (c∗ + c)/2||2 < d, which is a contradiction. Therefore, c∗ is PCx.

The proof just given relies on the Bolzano–Weierstrass Theorem 3.1.
There is another proof, which avoids this theorem and so is valid for infinite-
dimensional Hilbert space. The idea is to use the Parallelogram Law to show
that the sequence {cn} is Cauchy and then to use completeness to get c∗.
We leave the details to the reader.

Here are some examples of orthogonal projection. If C = U , the unit
ball, then PCx = x/||x||2, for all x such that ||x||2 > 1, and PCx = x
otherwise. If C is RJ+, the nonnegative cone of RJ , consisting of all vectors

50 A First Course in Optimization

x with xj ≥ 0, for each j, then PCx = x+, the vector whose entries are
max (xj , 0). For any closed, convex set C, the distance from x to C is
||x− PCx||2.

If a nonempty closed set S is not convex, then the orthogonal projection
of a vector x onto S need not be well defined; there may be more than one
vector in S closest to x. In fact, it is known that a closed set S is convex if
and only if, for every x not in S, there is a unique point in S closest to x;
this is Motzkin’s Theorem (see [24], p. 447). Note that there may well be
some x for which there is a unique closest point in S, but if S is closed, but
not convex, then there must be at least one point without a unique closest
point in S.

The main reason for not speaking about orthogonal projection in the
context of other norms is that there need not be a unique closest point in
C to x; remember that the Parallelogram Law need not hold. For example,
consider the closed convex set C in R2 consisting of all vectors (a, b)T with
a ≥ 0, b ≥ 0, and a + b = 1. Let x = (1, 1)T . Then each point in C is a
distance one from x, in the sense of the one-norm.

Lemma 4.2 For H = H(a, γ), z = PHx is the vector

z = PHx = x+ (γ − 〈a, x〉)a.

Proof: In Exercise 4.10 the reader is asked to supply a proof.

We shall use this fact in our discussion of the ART algorithm.
For an arbitrary nonempty closed convex set C in RJ , the orthogonal

projection T = PC is a nonlinear operator, unless, of course, C is a sub-
space. We may not be able to describe PCx explicitly, but we do know a
useful property of PCx.

Proposition 4.4 For a given x, a vector z in C is PCx if and only if

〈c− z, z − x〉 ≥ 0,

for all c in the set C.

Proof: Let c be arbitrary in C and α in (0, 1). Then

||x− PCx||22 ≤ ||x− (1− α)PCx− αc||22 = ||x− PCx+ α(PCx− c)||22

= ||x− PCx||22 − 2α〈x− PCx, c− PCx〉+ α2||PCx− c||22.

Therefore,

−2α〈x− PCx, c− PCx〉+ α2||PCx− c||22 ≥ 0,

so that
2〈x− PCx, c− PCx〉 ≤ α||PCx− c||22.

Convex Sets 51

Taking the limit, as α→ 0, we conclude that

〈c− PCx, PCx− x〉 ≥ 0.

If z is a member of C that also has the property

〈c− z, z − x〉 ≥ 0,

for all c in C, then we have both

〈z − PCx, PCx− x〉 ≥ 0,

and
〈z − PCx, x− z〉 ≥ 0.

Adding on both sides of these two inequalities leads to

〈z − PCx, PCx− z〉 ≥ 0.

But,
〈z − PCx, PCx− z〉 = −||z − PCx||22,

so it must be the case that z = PCx. This completes the proof.

Corollary 4.1 For any x and y in RJ we have

〈PCx− PCy, x− y〉 ≥ ‖PCx− PCy‖22, (4.4)

and so
‖PCx− PCy‖2 ≤ ‖x− y‖2;

that is, the operator PC is nonexpansive.

Proof: Use Proposition 4.4 to get

〈PCy − PCx, PCx− x〉 ≥ 0,

or

〈PCx− PCy, x− PCx〉 ≥ 0, (4.5)

and

〈PCx− PCy, PCy − y〉 ≥ 0. (4.6)

Now add the two inequalities in (4.5) and (4.6) to obtain

〈PCx− PCy, x− y〉 ≥ ||PCx− PCy||22.

So PC is firmly nonexpansive.

Corollary 4.2 If ‖PCx− PCy‖ = ‖x− y‖, then PCx− x = PCy − y.

Proof: The proof is left as Exercise 4.18.

52 A First Course in Optimization

4.5 More on Projections

The characterization of the orthogonal-projection operator PC given by
Proposition 4.4 has a number of important consequences.

Corollary 4.3 Let S be any subspace of RJ . Then, for any x in RJ and s
in S, we have

〈PSx− x, s〉 = 0.

Proof: Since S is a subspace, s+ PSx is again in S, for all s, as is γs, for
every scalar γ.

This corollary enables us to prove the Decomposition Theorem.

Theorem 4.1 Let S be any subspace of RJ and x any member of RJ . Then
there are unique vectors s in S and u in S⊥ such that x = s+u. The vector
s is PSx and the vector u is PS⊥x.

Proof: For the given x we take s = PSx and u = x − PSx. Corollary 4.3
assures us that u is in S⊥. Now we need to show that this decomposition is
unique. To that end, suppose that we can write x = s1 + u1, with s1 in S
and u1 in S⊥. Then Proposition 4.4 tells us that, since s1−x is orthogonal
to every member of S, s1 must be PSx.

This theorem is often presented in a slightly different manner.

Theorem 4.2 Let A be a real I by J matrix. Then every vector b in RI
can be written uniquely as b = Ax+ w, where ATw = 0.

To derive Theorem 4.2 from Theorem 4.1, we simply let S = {Ax|x ∈ RJ}.
Then S⊥ is the set of all w such that ATw = 0. It follows that w is the
member of the null space of AT closest to b.

Here are additional consequences of Proposition 4.4.

Corollary 4.4 Let S be any subspace of RJ , d a fixed vector, and M the
linear manifold M = S + d = {v = s + d|s ∈ S}, obtained by translating
the members of S by the vector d. Then, for every x in RJ and every v in
M , we have

〈PMx− x, v − PMx〉 = 0.

Proof: Since v and PMx are in M , they have the form v = s + d, and
PMx = ŝ+ d, for some s and ŝ in S. Then v − PMx = s− ŝ.

Corollary 4.5 Let H be the hyperplane H(a, γ). Then, for every x, and
every h in H, we have

〈PHx− x, h− PHx〉 = 0.

Convex Sets 53

Corollary 4.6 Let S be a subspace of RJ . Then (S⊥)⊥ = S.

Proof: We know from Theorem 4.1 that any x can be written as x = s+u,
where s is in S and u is in S⊥. Suppose now that x is in the set (S⊥)⊥.
Then

‖x‖22 = 〈x, x〉 = 〈x, s+ u〉 = 〈x, s〉 = 〈s+ u, s〉 = 〈s, s〉 = ‖s‖22.

But we also have

‖x‖22 = ‖s+ u‖22 = ‖s‖22 + ‖u‖22 + 2〈s, u〉 = ‖s‖22 + ‖u‖22,

from which we conclude that ‖u‖22 = 0, and x = s is in S.

4.6 Linear and Affine Operators on RJ

If A is a J by J real matrix, then we can define an operator T by
setting Tx = Ax, for each x in RJ ; here Ax denotes the multiplication of
the matrix A and the column vector x.

Definition 4.26 An operator T is said to be a linear operator if

T (αx+ βy) = αTx+ βTy,

for each pair of vectors x and y and each pair of scalars α and β.

Any operator T that comes from matrix multiplication, that is, for which
Tx = Ax, is linear. In fact, all linear operators are of this type.

Lemma 4.3 For H = H(a, γ), H0 = H(a, 0), and any x and y in RJ , we
have

PH(x+ y) = PHx+ PHy − PH0,

so that
PH0(x+ y) = PH0x+ PH0y,

that is, the operator PH0 is an additive operator. In addition,

PH0
(αx) = αPH0

x,

so that PH0
is a linear operator.

Definition 4.27 If B is a J by J real matrix and d is a fixed nonzero vector
in RJ , the operator defined by Tx = Bx+ d is an affine-linear operator or
just an affine operator.

54 A First Course in Optimization

Lemma 4.4 For any hyperplane H = H(a, γ) and H0 = H(a, 0),

PHx = PH0
x+ PH0,

so PH is an affine-linear operator.

Lemma 4.5 For i = 1, ..., I let Hi be the hyperplane Hi = H(ai, γi),
Hi0 = H(ai, 0), and Pi and Pi0 the orthogonal projections onto Hi and Hi0,
respectively. Let T be the operator T = PIPI−1 · · ·P2P1. Then Tx = Bx+d,
for some square matrix B and vector d; that is, T is an affine-linear oper-
ator.

4.7 The Fundamental Theorems

The Separation Theorem and the Support Theorem provide the foun-
dation for the geometric approach to the calculus of functions of several
variables.

A real-valued function f(x) defined for real x has a derivative at x = x0
if and only if there is a unique line through the point (x0, f(x0)) tangent
to the graph of f(x) at that point. If f(x) is not differentiable at x0, there
may be more than one such tangent line, as happens with the function
f(x) = |x| at x0 = 0. For functions of several variables the geometric view
of differentiation involves tangent hyperplanes.

4.7.1 Basic Definitions

It is convenient for us to consider functions on RJ whose values may be
infinite. For example, we define the indicator function of a set C ⊆ RJ to
have the value zero for x in C, and the value +∞ for x outside the set C.

Definition 4.28 A function f : RJ → [−∞,∞] is proper if there is no x
for which f(x) = −∞ and some x for which f(x) < +∞.

All the functions we shall consider in this text will be proper.

Definition 4.29 Let f be a proper function defined on RJ . The subset of
RJ+1 defined by

epi(f) = {(x, γ)|f(x) ≤ γ}

is the epigraph of f . Then we say that f is convex if its epigraph is a convex
set.

Alternative definitions of convex function are presented in the exercises.

Convex Sets 55

Definition 4.30 The effective domain of a proper function f : RJ →
(−∞,∞] is the set

dom(f) = {x| f(x) < +∞}.

It is also the projection onto RJ of its epigraph.

It is easily shown that the effective domain of a convex function is a convex
set.

The important role played by hyperplanes tangent to the epigraph of
f motivates our study of the relationship between hyperplanes and convex
sets.

4.7.2 The Separation Theorem

The Separation Theorem, sometimes called the Geometric Hahn–
Banach Theorem, is an easy consequence of the existence of orthogonal
projections onto closed convex sets.

Theorem 4.3 (The Separation Theorem) Let C be a closed nonempty
convex set in RJ and x a point not in C. Then there is non-zero vector a
in RJ and real number α such that

〈a, c〉 ≤ α < 〈a, x〉,

for every c in C.

Proof: Let z = PCx, a = x − z, and α = 〈a, z〉. Then using Proposition
4.4, we have

〈−a, c− z〉 ≥ 0,

or, equivalently,
〈a, c〉 ≤ 〈a, z〉 = α ,

for all c in C. But, we also have

〈a, x〉 = 〈a, x− z〉+ 〈a, z〉 = ||x− z||22 + α > α.

This completes the proof.

4.7.3 The Support Theorem

The Separation Theorem concerns a closed convex set C and a point x
outside the set C, and asserts the existence of a hyperplane separating the
two. Now we are concerned with a point z on the boundary of a convex set
C, such as a point (b, f(b)) on the boundary of the epigraph of f .

56 A First Course in Optimization

The Support Theorem asserts the existence of a hyperplane through
such a point z, having the convex set entirely contained in one of its half-
spaces. If we knew a priori that the point z is PCx for some x outside
C, then we could simply take the vector a = x − z as the normal to the
desired hyperplane. The essence of the Support Theorem is to provide such
a normal vector without assuming that z = PCx.

For the proofs that follow we shall need the following definitions.

Definition 4.31 For subsets A and B of RJ , and scalar γ, let the set
A + B consist of all vectors v of the form v = a + b, and γA consist of
all vectors w of the form w = γa, for some a in A and b in B. Let x be a
fixed member of RJ . Then the set x+A is the set of all vectors y such that
y = x+ a, for some a in A.

Lemma 4.6 Let B be the unit ball in RJ , that is, B is the set of all vectors
u with ||u||2 ≤ 1. Let S be an arbitrary subset of RJ . Then x is in the
interior of S if and only if there is some ε > 0 such that x+ εB ⊆ S, and
y is in the closure of S if and only if, for every ε > 0, the set y + εB has
nonempty intersection with S.

We begin with the Accessibility Lemma. Note that the relative interior
of any nonempty convex set is always nonempty (see [182], Theorem 6.2).

Lemma 4.7 (The Accessibility Lemma) Let C be a convex set. Let x
be in the relative interior of C and y in the closure of C. Then, for all
scalars α in the interval [0, 1), the point (1 − α)x + αy is in the relative
interior of C.

Proof: If the dimension of C is less than J , we can transform the problem
into a space of smaller dimension. Therefore, without loss of generality, we
can assume that the dimension of C is J , its affine hull is all of RJ , and its
relative interior is its interior. Let α be fixed, and B = {z| ||z||2 ≤ 1}. We
have to show that there is some ε > 0 such that the set (1−α)x+αy+ εB
is a subset of the set C. We know that y is in the set C + εB for every
ε > 0, since y is in the closure of C. Therefore, for all ε > 0 we have

(1− α)x+ αy + εB ⊆ (1− α)x+ α(C + εB) + εB

= (1− α)x+ (1 + α)εB + αC

= (1− α)[x+ ε(1 + α)(1− α)−1B] + αC.

Since x is in the interior of the set C, we know that

[x+ ε(1 + α)(1− α)−1B] ⊆ C,

for ε small enough. This completes the proof.

Convex Sets 57

Theorem 4.4 (The Support Theorem) Let C be convex, and let z be
on the boundary of C. Then there is a non-zero vector a in RJ with 〈a, z〉 ≥
〈a, c〉, for all c in C.

Proof: If the dimension of C is less than J , then every point of C is on
the boundary of C. Let the affine hull of C be M = S + b. Then the set
C − b is contained in the subspace S, which, in turn, can be contained in
a hyperplane through the origin, H(a, 0). Then

〈a, c〉 = 〈a, b〉,

for all c in C. So we focus on the case in which the dimension of C is J , in
which case the interior of C must be nonempty.

Let y be in the interior of C, and, for each t > 1, let zt = y + t(z − y).
Note that zt is not in the closure of C, for any t > 1, by the Accessibility
Lemma, since z is not in the interior of C. By the Separation Theorem,
there are vectors bt such that

〈bt, c〉 < 〈bt, zt〉,

for all c in C. For convenience, we assume that ||bt||2 = 1, and that {tk} is
a sequence with tk > 1 and {tk} → 1, as k →∞. Let ak = btk . Then there
is a subsequence of the {ak} converging to some a, with ||a||2 = 1, and

〈a, c〉 ≤ 〈a, z〉,

for all c in C. This completes the proof.

If we had known that there was a vector x not in C, such that z = PCx,
then we could have choosen a = x − z, as in the proof of the Separation
Theorem. The point of the Support Theorem is that we cannot assume, a
priori, that there is such an x. Once we have the vector a, however, any
point x = z + λa, for λ ≥ 0, has the property that z = PCx.

4.8 Block-Matrix Notation

Beginning in the next section we shall make extensive use of what is
called block-matrix notation. The following example will illustrate this con-
cept. Consider the matrix multiplication

[
1 2 3
4 5 6

]xy
z

 =

[
x+ 2y + 3z
4x+ 5y + 6z

]
.

58 A First Course in Optimization

We define

A =

[
1 2
4 5

]
, B =

[
3
6

]
,

u =

[
x
y

]
, and v =

[
z
]
.

We then write [
1 2 3
4 5 6

]xy
z

 =
[
A B

] [u
v

]
.

We calculate the product using the rule[
A B

] [u
v

]
= Au+Bv,

just as if the A, u, B, and v were numbers. From

Au =

[
1 2
4 5

] [
x
y

]
=

[
x+ 2y
4x+ 5y

]
and

Bv =

[
3
6

] [
z
]

=

[
3z
6z

]
,

we see that

Au+Bv =

[
x+ 2y + 3z
4x+ 5y + 6z

]
,

which is what we got previously.

4.9 Theorems of the Alternative

In linear algebra the emphasis is on systems of linear equations; little
time, if any, is spent on systems of linear inequalities. But linear inequalities
are important in optimization. In this section we consider some of the
basic theorems regarding linear inequalities. These theorems all fit a certain
pattern, known as a Theorem of the Alternative. These theorems assert that
precisely one of two problems will have a solution. The proof of the first
theorem illustrates how we should go about proving such theorems.

Theorem 4.5 (Gale I)[115] Precisely one of the following is true:

(1) there is x such that Ax = b;

(2) there is y such that AT y = 0 and bT y = 1.

Convex Sets 59

Proof: First, we show that it is not possible for both to be true at the same
time. Suppose that Ax = b and AT y = 0. Then bT y = xTAT y = 0, so that
we cannot have bT y = 1. By Theorem 4.1, the fundamental decomposition
theorem from linear algebra, we know that, for any b, there are unique
Ax and w with ATw = 0 such that b = Ax + w. Clearly, b = Ax if and
only if w = 0. Also, bT y = wT y. Therefore, if alternative (1) does not
hold, we must have w non-zero, in which case AT y = 0 and bT y = 1, for
y = w/||w||22, so alternative (2) holds.

In this section we consider several other theorems of this type. Perhaps
the most well known of these theorems of the alternative is Farkas’ Lemma.

Theorem 4.6 (Farkas’ Lemma)[110] Precisely one of the following is
true:

(1) there is x ≥ 0 such that Ax = b;

(2) there is y such that AT y ≥ 0 and bT y < 0.

Proof: We can restate the lemma as follows. There is a vector y with
AT y ≥ 0 and bT y < 0 if and only if b is not a member of the convex set
C = {Ax|x ≥ 0}. If b is not in C, which is closed and convex, then, by the
Separation Theorem, there is a non-zero vector a and real α with

〈a, b〉 = bTa > α ≥ 〈a,Ax〉 = (Ax)Ta = xTATa,

for all x ≥ 0. Since xTATa is bounded above, as x runs over all nonnegative
vectors, it follows that ATa ≤ 0. Choosing x = 0, we have α ≥ 0. Then let
y = −a. Conversely, if Ax = b does have a nonnegative solution x, then
AT y ≥ 0 implies that yTAx = yT b ≥ 0.

The next theorem can be obtained from Farkas’ Lemma.

Theorem 4.7 (Gale II)[115] Precisely one of the following is true:

(1) there is x such that Ax ≤ b;

(2) there is y ≥ 0 such that AT y = 0 and bT y < 0.

Proof: First, if both are true, then 0 ≤ yT (b − Ax) = yT b − 0 = yT b,
which is a contradiction. Now assume that (2) does not hold. Therefore,
for every y ≥ 0 with AT y = 0, we have bT y ≥ 0. Let B =

[
A b

]
. Then the

system BT y =
[
0 −1

]T
has no nonnegative solution. Applying Farkas’

Lemma, we find that there is a vector w =
[
z γ

]T
with Bw ≥ 0 and[

0 −1
]
w < 0. So, Az+ γb ≥ 0 and γ > 0. Let x = − 1

γ z to get Ax ≤ b, so

that (1) holds.

The next theorem also is a consequence of Farkas’ Lemma.

60 A First Course in Optimization

Theorem 4.8 (Gordan)[120] Precisely one of the following is true:

(1) there is x such that Ax < 0;

(2) there is y ≥ 0, y 6= 0, such that AT y = 0.

Proof: First, if both are true, then 0 < −yTAx = 0, which cannot be
true. Now assume that there is no non-zero y ≥ 0 with AT y = 0. Then,
with e = (1, 1, ..., 1)T , C =

[
A e

]
, and d = (0, 0, ..., 0, 1)T , there is no

nonnegative solution of CT y = d. From Farkas’ Lemma we then know that

there is a vector z =
[
uT γ

]T
, with Cz = Au + γe ≥ 0, and dT z < 0.

Then Ax < 0 for x = −u.

Here are several more theorems of the alternative.

Theorem 4.9 (Stiemke I)[194] Precisely one of the following is true:

(1) there is x such that Ax ≤ 0 and Ax 6= 0;

(2) there is y > 0 such that AT y = 0.

Theorem 4.10 (Stiemke II)[194] Let c be a fixed non-zero vector. Pre-
cisely one of the following is true:

(1) there is x such that Ax ≤ 0 and cTx ≥ 0 and not both Ax = 0 and
cTx = 0;

(2) there is y > 0 such that AT y = c.

When we study linear programming in Chapter 6 we shall encounter
David Gale’s Strong Duality Theorem. His proof of that theorem will de-
pend heavily on the following theorem of the alternative.

Theorem 4.11 (Gale III)[115] Let b be a fixed non-zero vector. Precisely
one of the following is true:

(1) there is x ≥ 0 such that Ax ≤ b;

(2) there is y ≥ 0 such that AT y ≥ 0 and bT y < 0.

Proof: First, note that we cannot have both true at the same time, because
bT y < 0, y ≥ 0, and Ax ≤ b would imply that xTAT y = x ·AT y < 0, which
is a contradiction. Now suppose that (1) does not hold. Then there is no

w =

[
x
u

]
≥ 0 such that [

A I
]
w = b.

By Farkas’ Lemma (Theorem 4.6), it follows that there is y with[
AT

I

]
y ≥ 0,

Convex Sets 61

and bT y < 0. Therefore, AT y ≥ 0, Iy = y ≥ 0, and bT y < 0; therefore, (2)
holds.

Theorem 4.12 (von Neumann)[167] Precisely one of the following is
true:

(1) there is x ≥ 0 such that Ax > 0;

(2) there is y ≥ 0, y 6= 0, such that AT y ≤ 0.

Proof: If both were true, then we would have

0 < (Ax)T y = xT (AT y),

so that AT y ≤ 0 would be false. Now suppose that (2) does not hold. Then
there is no y ≥ 0, y 6= 0, with AT y ≤ 0. Consequently, there is no y ≥ 0,
y 6= 0, such that [

AT

−uT
]
y =

[
AT y
−uT y

]
≤
[

0
−1

]
,

where uT = (1, 1, ..., 1). By Theorem 4.11, there is

z =

[
x
α

]
≥ 0,

such that [
A −u

]
z =

[
A −u

] [x
α

]
≥ 0,

and [
0T −1

]
z =

[
0T −1

] [x
α

]
= −α < 0.

Therefore, α > 0 and (Ax)i − α ≥ 0 for each i, and so Ax > 0 and (1)
holds.

Theorem 4.13 (Tucker)[197] Precisely one of the following is true:

(1) there is x ≥ 0 such that Ax ≥ 0, Ax 6= 0;

(2) there is y > 0 such that AT y ≤ 0.

Theorem 4.14 (Theorem 21.1, [182]) Let C be a convex set, and let
f1, ..., fm be proper convex functions, with ri(C) ⊆ dom(fi), for each i.
Precisely one of the following is true:

(1) there is x ∈ C such that fi(x) < 0, for i = 1, ...,m;

62 A First Course in Optimization

(2) there are λi ≥ 0, not all equal to zero, such that

λ1f1(x) + ...+ λmfm(x) ≥ 0,

for all x in C.

Theorem 4.14 is fundamental in proving Helly’s Theorem.

Theorem 4.15 (Helly’s Theorem) [182] Let {Ci |i = 1, ..., I} be a fi-
nite collection of (not necessarily closed) convex sets in RN . If every sub-
collection of N +1 or fewer sets has nonempty intersection, then the entire
collection has nonempty intersection.

For instance, in the two-dimensional plane, if a finite collection of lines
is such that every three have a common point of intersection, then they all
have a common point of intersection. There is another version of Helly’s
Theorem that applies to convex inequalities.

Theorem 4.16 Let there be given a system of the form

f1(x) < 0, ..., fk(x) < 0, fk+1(x) ≤ 0, ..., fm(x) ≤ 0,

where the fi are convex functions on RJ , and the inequalities may be all
strict or all weak. If every subsystem of J + 1 or fewer inequalities has a
solution in a given convex set C, then the entire system has a solution in
C.

4.10 Another Proof of Farkas’ Lemma

In the previous section, we proved Farkas’ Lemma, Theorem 4.6, using
the Separation Theorem, the proof of which, in turn, depended here on
the existence of the orthogonal projection onto any closed convex set. It is
possible to prove Farkas’ Lemma directly, along the lines of Gale [115].

Convex Sets 63

Suppose that Ax = b has no nonnegative solution. If, indeed, it has no
solution whatsoever, then b = Ax + w, where w 6= 0 and ATw = 0. Then
we take y = −w/||w||22. So suppose that Ax = b does have solutions, but
not any nonnegative ones. The approach is to use induction on the number
of columns of the matrix involved in the lemma.

If A has only one column, denoted a1, then Ax = b can be written as

x1a
1 = b.

Assuming that there are no nonnegative solutions, it must follow that x1 <
0. We take y = −b. Then

bT y = −bT b = −||b||22 < 0,

while

AT y = (a1)T (−b) =
−1

x1
bT b > 0.

Now assume that the lemma holds whenever the involved matrix has no
more than m− 1 columns. We show the same is true for m columns.

If there is no nonnegative solution of the system Ax = b, then clearly
there are no nonnegative real numbers x1, x2, ..., xm−1 such that

x1a
1 + x2a

2 + ...+ xm−1a
m−1 = b,

where aj denotes the jth column of the matrix A. By the induction hy-
pothesis, there must be a vector v with

(aj)T v ≥ 0,

for j = 1, ...,m− 1, and bT v < 0. If it happens that (am)T v ≥ 0 also, then
we are done. If, on the other hand, we have (am)T v < 0, then let

cj = (aj)Tam − (am)Taj , j = 1, ...,m− 1,

and
d = (bT v)am − ((am)T v)b.

Then there are no nonnegative real numbers z1, ..., zm−1 such that

z1c
1 + z2c

2 + ...+ zm−1c
m−1 = d, (4.7)

since, otherwise, it would follow from simple calculations that

−1

(am)T v

([
m−1∑
j=1

zj((a
j)T v)

]
− bT v

)
am −

m−1∑
j=1

zj((a
m)T v)aj = b.

Close inspection of this shows all the coefficients to be nonnegative, which

64 A First Course in Optimization

implies that the system Ax = b has a nonnegative solution, contrary to our
assumption. It follows, therefore, that there can be no nonnegative solution
to the system in Equation (4.7).

By the induction hypothesis, it follows that there is a vector u such that

(cj)Tu ≥ 0, j = 1, ...,m− 1,

and
dTu < 0.

Now let
y = ((am)Tu)v − ((am)T v)u.

We can easily verify that

(aj)T y = (cj)Tu ≥ 0, j = 1, ...,m− 1,

bT y = dTu < 0,

and
(am)T y = 0,

so that
AT y ≥ 0,

and
bT y < 0.

This completes the proof.

4.11 Gordan’s Theorem Revisited

In their text [23], Borwein and Lewis give the following version of Gor-
dan’s Theorem 4.8.

Theorem 4.17 For any vectors a0, a1, ..., am in RJ , exactly one of the
following systems has a solution:

m∑
i=0

λia
i = 0,

m∑
i=0

λi = 1, 0 ≤ λ0, λ1, ..., λm; (4.8)

or there is some x for which

xTai < 0, for i = 0, 1, ...,m. (4.9)

The following proposition will be useful in the proof.

Convex Sets 65

Proposition 4.5 If the function f : RJ → R is differentiable and bounded
below, that is, there is a constant α such that α ≤ f(x) for all x, then for
every ε > 0 there is a point xε with ‖∇f(xε)‖2 ≤ ε.

Proof: Fix ε > 0. The function f(x) + ε‖x‖2 has bounded level sets, so,
by Proposition 3.2, it has a global minimizer, which we denote by xε. We
show that d = ∇f(xε) has ‖d‖2 ≤ ε.

If not, then ‖d‖2 > ε. From the inequality

lim
t↓0

f(xε − td)− f(xε)

t
= −〈∇f(xε), d〉 = −‖d‖22 < −ε‖d‖2

we would have, for small positive t,

−tε‖d‖2 > f(xε − td)− f(xε)

= (f(xε − td) + ε‖xε − td‖2)− (f(xε) + ε‖xε‖2)
+ε(‖xε‖2 − ‖xε − td‖2) ≥ −tε‖d‖2,

which is impossible.

Rather than prove Theorem 4.8 using the theory of convex sets and
separation, as we did previously, they take the following approach. Let

f(x) = log
(m∑

i=0

exp(xT ai)
)
.

We then have the following theorem.

Theorem 4.18 The following statements are equivalent:

(1) The function f(x) is bounded below.

(2) System (4.8) is solvable.

(3) System (4.9) is unsolvable.

Proof: Showing that (2) implies (3) is easy. To show that (3) implies (1),
note that if f(x) is not bounded below, then there is some x with f(x) ≤ 0,
which forces xTai < 0, for all i. Finally, to show that (1) implies (2), we
use Proposition 4.5. Then there is a sequence {xn} with ‖∇f(xn)‖2 ≤ 1

n ,
for each n. Since

∇f(xn) =

m∑
i=0

λn
i a

i,

for

λn
i = exp((xn)Tai)/

m∑
i=0

exp((xn)T ai),

66 A First Course in Optimization

it follows that

‖
m∑
i=0

λni a
i‖2 <

1

n
,

for each n. The sequence {λn} is bounded, so there is a convergent subse-
quence, converging to some λ∗ for which

∑m
i=0 λ

∗
i a
i = 0.

4.12 Exercises

Ex. 4.1 A more geometric approach to Cauchy’s Inequality begins with an
alternative approach to orthogonality [68]. Let x and y be nonzero vectors
in RJ . Say that x is orthogonal to y if

‖x− y‖2 = ‖x+ y‖2.

To visualize this, draw a triangle with vertices x, y and −y. Then show that
x and y are orthogonal if and only if x ·y = 0 and if and only if Pythagoras’
Theorem holds; that is,

‖x− y‖22 = ‖x‖22 + ‖y‖22.

Let p be the orthogonal projection of x on the line determined by y and
the origin. Then p = γy for some constant γ. First, find γ using the fact
that y and x−γy are orthogonal. Then use Pythagoras’ Theorem to obtain
Cauchy’s Inequality. Define the angle between vectors x and y to be α such
that

cosα =
x · y

‖x‖2‖y‖2
.

Then use this to prove the Law of Cosines and the Triangle Inequality.

Ex. 4.2 Let C ⊆ RJ , and let xn, n = 1, ..., N be members of C. For
n = 1, ..., N , let αn > 0, with α1 + ...+ αN = 1. Show that, if C is convex,
then the convex combination

α1x
1 + α2x

2 + ...+ αNx
N

is in C.

Ex. 4.3 Prove Proposition 4.2. Hint: Show that the set C is convex.

Ex. 4.4 Show that the subset of RJ consisting of all vectors x with ||x||2 =
1 is not convex.

Convex Sets 67

Ex. 4.5 Let ‖x‖2 = ‖y‖2 = 1 and z = 1
2 (x+ y) in RJ . Show that ‖z‖2 < 1

unless x = y. Show that this conclusion does not hold if the two-norm ‖ · ‖2
is replaced by the one-norm, defined by

‖x‖1 =

J∑
j=1

|xj |.

Ex. 4.6 Let C be the set of all vectors x in RJ with ‖x‖2 ≤ 1. Let K be a
subset of C obtained by removing from C any number of its members for
which ‖x‖2 = 1. Show that K is convex. Consequently, every x in C with
‖x‖2 = 1 is an extreme point of C.

Ex. 4.7 Prove that every subspace of RJ is convex, and every linear man-
ifold is convex.

Ex. 4.8 Prove that every hyperplane H(a, γ) is a linear manifold.

Ex. 4.9 Prove Lemma 4.1.

Ex. 4.10 Prove Lemma 4.2.

Ex. 4.11 Let A and B be nonempty, closed convex subsets of RJ . Define
the set B − A to be all x in RJ such that x = b − a for some a ∈ A and
b ∈ B. Show that B − A is closed if one of the two sets is bounded. Find
an example of two disjoint unbounded closed convex sets in R2 that get
arbitrarily close to each other. Show that, for this example, B − A is not
closed.

Ex. 4.12 (a) Let C be a circular region in R2. Determine the normal cone
for a point on its circumference. (b) Let C be a rectangular region in R2.
Determine the normal cone for a point on its boundary.

Ex. 4.13 Prove Lemmas 4.3, 4.4 and 4.5.

Ex. 4.14 Let C be a convex set and f : C ⊆ RJ → (−∞,∞]. Prove that
f(x) is a convex function, according to Definition 4.29, if and only if, for
all x and y in C, and for all 0 < α < 1, we have

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Ex. 4.15 Let f : RJ → [−∞,∞]. Prove that f(x) is a convex function if
and only if, for all 0 < α < 1, we have

f(αx+ (1− α)y) < αb+ (1− α)c,

whenever f(x) < b and f(y) < c.

68 A First Course in Optimization

Ex. 4.16 Show that the vector a is orthogonal to the hyperplane H =
H(a, γ); that is, if u and v are in H, then a is orthogonal to u− v.

Ex. 4.17 Given a point s in a convex set C, where are the points x for
which s = PCx?

Ex. 4.18 Prove Corollary 4.2.

Ex. 4.19 Show that it is possible to have a vector z ∈ RJ such that
〈z − x, c− z〉 ≥ 0 for all c ∈ C, but z is not PCx.

Ex. 4.20 Let z and a be as in the Support Theorem, let γ > 0, and let
x = z + γa. Show that z = PCx.

Ex. 4.21 Let C be a closed, nonempty convex set in RJ and x not in C.
Show that the distance from x to C is equal to the maximum of the distances
from x to any hyperplane that separates x from C. Hint: Draw a picture.

Ex. 4.22 Let C be a nonempty set in RJ that is closed and convex, x a
vector not in C, and d > 0 the distance from x to C. Let

σC(a) = sup
c∈C
〈a, c〉 ,

the support function of C. Note that σC(a) may be infinite for some a,
but not for all a. Show that

d = max
||a||≤1

{〈a, x〉 − σC(a)}.

The point here is to turn a minimization problem into one involving only
maximization. Try drawing a picture and using Lemma 4.1. Hints: Consider
the unit vector 1

d (x − PCx), and use Cauchy’s Inequality and Proposition
4.4. Remember that PCx is in C, so that

〈a, PCx〉 ≤ σC(a).

Remark: If, in the definition of the support function, we take the vectors
a to be unit vectors, with a = (cos θ, sin θ), for 0 ≤ θ < 2π, then we can
define the function

f(θ) = sup
(x,y)∈C

x cos θ + y sin θ.

In [155] Tom Marzetta considers this function, as well as related functions
of θ, such as the radius of curvature function, and establishes relationships
between the behavior of these functions and the convex set itself.

Convex Sets 69

Ex. 4.23 [10] Let A and B be nonempty closed convex subsets of RJ . For
each a ∈ A define

d(a,B) = inf
b∈B

‖a− b‖2,
and then define

d(A,B) = inf
a∈A

d(a,B).

Let
E = {a ∈ A|d(a,B) = d(A,B)},

and
F = {b ∈ B|d(b, A) = d(B,A)};

assume that both E and F are not empty. The displacement vector is v =
PK(0), where K is the closure of the set B − A. For any transformation
T : RJ → RJ , denote by Fix(T) the set of all x ∈ RJ such that Tx = x.
Prove the following:

(a) ‖v‖2 = d(A,B);

(b) E + v = F ;

(c) E = Fix(PAPB) = A ∩ (B − v);

(d) F = Fix(PBPA) = B ∩ (A+ v);

(e) PBe = PF e = e+ v, for all e ∈ E;

(f) PAf = PEf = f − v, for all f ∈ F .

Ex. 4.24 Let A and B be nonempty closed convex subsets of RJ , with the
distance between A and B given by d = infa∈A,b∈B ‖a − b‖2. Assume that
z is a fixed point of the operator T = PAPB.

(a) Show that ‖z − PBz‖2 = d.

(b) Let xk+1 = Txk, for k = 0, 1, Show that {‖z−xk‖2} is a decreasing
sequence, so that the sequence {xk} is bounded and has at least one
cluster point, x∗.

(c) Show that Tx∗ = x∗ and the sequence {xk} converges to x∗.

Ex. 4.25 (R̊adström Cancellation [23])

(a) Show that, for any subset S of RN , we have 2S ⊆ S + S, and 2S =
S + S if S is convex.

(b) Find three finite subsets of R, say A, B, and C, with A not contained
in B, but with the property that A+C ⊆ B+C. Hint: Try to find an
example where the set C is C = {−1, 0, 1}.

70 A First Course in Optimization

(c) Show that, if A and B are convex in RN , B is closed, and C is
bounded in RN , then A+C ⊆ B+C implies that A ⊆ B. Hint: Note
that, under these assumptions, 2A+ C = A+ (A+ C) ⊆ 2B + C.

Chapter 5

Vector Spaces and Matrices

5.1 Chapter Summary . 71
5.2 Vector Spaces . 71
5.3 Basic Linear Algebra . 74

5.3.1 Bases and Dimension . 74
5.3.2 The Rank of a Matrix . 75
5.3.3 The “Matrix Inversion Theorem” . 77
5.3.4 Systems of Linear Equations . 77
5.3.5 Real and Complex Systems of Linear Equations 78

5.4 LU and QR Factorization . 80
5.5 The LU Factorization . 80

5.5.1 A Shortcut . 81
5.5.2 A Warning! . 82
5.5.3 The QR Factorization and Least Squares 85

5.6 Exercises . 85

5.1 Chapter Summary

In preparation for our discussion of linear programming, we present a
brief review of the fundamentals of matrix theory.

5.2 Vector Spaces

Linear algebra is the study of vector spaces and linear transformations.
It is not simply the study of matrices, although matrix theory takes up
most of linear algebra.

It is common in mathematics to consider abstraction, which is simply
a means of talking about more than one thing at the same time. A vector
space V is an abstract algebraic structure defined using axioms. There are
many examples of vector spaces, such as the sets of real or complex numbers

71

72 A First Course in Optimization

themselves, the set of all polynomials, the set of row or column vectors of a
given dimension, the set of all infinite sequences of real or complex numbers,
the set of all matrices of a given size, and so on. The beauty of an abstract
approach is that we can talk about all of these, and much more, all at once,
without being specific about which example we mean.

A vector space is a set whose members are called vectors, on which
there are two algebraic operations, called scalar multiplication and vector
addition. As in any axiomatic approach, these notions are intentionally
abstract. A vector is defined to be a member of a vector space, nothing
more. Scalars are a bit more concrete, in that scalars are almost always
real or complex numbers, although sometimes, but not in this book, they
are members of an unspecified finite field. The operations themselves are
not explicitly defined, except to say that they behave according to certain
axioms, such as associativity and distributivity.

If v is a member of a vector space V and α is a scalar, then we denote
by αv the scalar multiplication of v by α. If w is also a member of V, then
we denote by v+w the vector addition of v and w. The following properties
serve to define a vector space, with u, v, and w denoting arbitrary members
of V and α and β arbitrary scalars:

(1) v + w = w + v;

(2) u+ (v + w) = (u+ v) + w;

(3) there is a “zero vector,” denoted 0, with v + 0 = v for all v;

(4) for each v there is a vector −v such that v + (−v) = 0;

(5) 1v = v, for all v;

(6) (αβ)v = α(βv);

(7) α(v + w) = αv + αw;

(8) (α+ β)v = αv + βv.

In Exercise 5.1 the reader is asked to prove that the zero vector is unique,
that each v has a unique additive inverse −v, and that (−1)v = −v, for all
v.

If u1, ..., uN are members of V and c1, ..., cN are scalars, then the vector

x = c1u
1 + c2u

2 + ...+ cNu
N

is called a linear combination of the vectors u1, ..., uN , with coefficients
c1, ..., cN .

If W is a subset of a vector space V, then W is called a subspace of
V if W is also a vector space for the same operations. What this means

Vector Spaces and Matrices 73

is simply that when we perform scalar multiplication on a vector in W,
or when we add vectors in W, we always get members of W back again.
Another way to say this is that W is closed to linear combinations.

When we speak of subspaces of V we do not mean to exclude the case
of W = V. Note that V is itself a subspace, but not a proper subspace, of
V. Every subspace must contain the zero vector, 0; the smallest subspace
of V is the subspace containing only the zero vector, W = {0}.

In the vector space V = R2, the subset of all vectors whose entries sum
to zero is a subspace, but the subset of all vectors whose entries sum to
one is not a subspace.

We often refer to things like
[
1 2 0

]
as vectors, although they are

but one example of a certain type of vector. For clarity, in this book we
shall call such an object a real row vector of dimension three or a real row

three-vector. Similarly, we shall call

3i
−1

2 + i
6

 a complex column vector of

dimension four or a complex column four-vector.

The transpose of the row vector
[
1 2 0

]
is the column vector

1
2
0

and the transpose of the column vector

1
2
0

 is the row vector
[
1 2 0

]
.

For any vector x the transpose of x is denoted xT .

The conjugate transpose of the column vector

3i
−1

2 + i
6

 is the row vec-

tor
[
−3i −1 2− i 6

]
, and the conjugate transpose of the row vector

[
−3i −1 2− i 6

]
is the column vector

3i
−1

2 + i
6

. For any vector x the

conjugate transpose of x is denoted x†. For notational convenience, when-
ever we refer to something like a real three-vector or a complex four-vector,
we shall always mean that they are columns, rather than rows. The space
of real (column) N -vectors will be denoted RN , while the space of complex
(column) N vectors is CN .

Shortly after beginning a discussion of vector spaces, we arrive at the
notion of the size or dimension of the vector space. A vector space can
be finite dimensional or infinite dimensional. The spaces RN and CN have
dimension N ; not a big surprise. The vector spaces of all infinite sequences

74 A First Course in Optimization

of real or complex numbers are infinite dimensional, as is the vector space
of all real or complex polynomials. If we choose to go down the path of
finite dimensionality, we very quickly find ourselves talking about matrices.
If we go down the path of infinite dimensionality, we quickly begin to
discuss convergence of infinite sequences and sums, and find that we need
to introduce norms, which takes us into functional analysis and the study of
Hilbert and Banach spaces. In this course we shall consider only the finite
dimensional vector spaces, which means that we shall be talking mainly
about matrices.

5.3 Basic Linear Algebra

In this section we discuss bases and dimension, systems of linear equa-
tions, Gaussian elimination, and the notions of basic and non-basic vari-
ables.

5.3.1 Bases and Dimension

The notions of a basis and of linear independence are fundamental in
linear algebra. Let V be a vector space.

Definition 5.1 A collection of vectors {u1, ..., uN} in V is linearly inde-
pendent if there is no choice of scalars α1, ..., αN , not all zero, such that

0 = α1u
1 + ...+ αNu

N .

Definition 5.2 The span of a collection of vectors {u1, ..., uN} in V is the
set of all vectors x that can be written as linear combinations of the un;
that is, for which there are scalars c1, ..., cN , such that

x = c1u
1 + ...+ cNu

N .

Definition 5.3 A collection of vectors {w1, ..., wN} in V is called a span-
ning set for a subspace S if S is their span.

Definition 5.4 A collection of vectors {u1, ..., uN} in V is called a basis
for a subspace S if the collection is linearly independent and S is their span.

Suppose that S is a subspace of V, that {w1, ..., wN} is a spanning set
for S, and {u1, ..., uM} is a linearly independent subset of S. Beginning with
w1, we augment the set {u1, ..., uM} with wj if wj is not in the span of the
um and the wk previously included. At the end of this process, we have

Vector Spaces and Matrices 75

a linearly independent spanning set, and therefore, a basis, for S. (Why?)
Similarly, beginning with w1, we remove wj from the set {w1, ..., wN} if wj

is a linear combination of the wk, k = 1, ..., j − 1. In this way we obtain
a linearly independent set that spans S, hence another basis for S. The
following lemma will allow us to prove that all bases for a subspace S have
the same number of elements.

Lemma 5.1 Let W = {w1, ..., wN} be a spanning set for a subspace S in
RI , and V = {v1, ..., vM} a linearly independent subset of S. Then M ≤ N .

Proof: Suppose that M > N . Let B0 = {w1, ..., wN}. To obtain the set
B1, form the set C1 = {v1, w1, ..., wN} and remove the first member of C1

that is a linear combination of members of C1 that occur to its left in the
listing; since v1 has no members to its left, it is not removed. Since W is
a spanning set, v1 is a linear combination of the members of W , so that
some member of W is a linear combination of v1 and the members of W
that precede it in the list; remove the first member of W for which this is
true.

We note that the set B1 is a spanning set for S and has N members.
Having obtained the spanning set Bk, with N members and whose first k
members are vk, ..., v1, we form the set Ck+1 = Bk ∪ {vk+1}, listing the
members so that the first k+1 of them are {vk+1, vk, ..., v1}. To get the set
Bk+1 we remove the first member of Ck+1 that is a linear combination of
the members to its left; there must be one, since Bk is a spanning set, and
so vk+1 is a linear combination of the members of Bk. Since the set V is
linearly independent, the member removed is from the set W . Continuing
in this fashion, we obtain a sequence of spanning sets B1, ..., BN , each with
N members. The set BN is BN = {v1, ..., vN} and vN+1 must then be
a linear combination of the members of BN , which contradicts the linear
independence of V .

Corollary 5.1 Every basis for a subspace S has the same number of ele-
ments.

Definition 5.5 The dimension of a subspace S is the number of elements
in any basis.

5.3.2 The Rank of a Matrix

Let A be an I by J matrix and x a J by 1 column vector. The equation
Ax = b tells us that the vector b is a linear combination of the columns of
the matrix A, with the entries of the vector x as the coefficients; that is,

b = x1a
1 + x2a

2 + ...+ xJa
J ,

76 A First Course in Optimization

where aj denotes the jth column of A. Similarly, when we write the product
C = AB, we are saying that the kth column of C is a linear combination of
the columns of A, with the entries of the kth column of B as coefficients.
It will be helpful to keep this in mind when reading the proof of the next
lemma.

Lemma 5.2 For any matrix A, the maximum number of linearly indepen-
dent rows equals the maximum number of linearly independent columns.

Proof: Suppose that A is an I by J matrix, and that K ≤ J is the
maximum number of linearly independent columns of A. Select K linearly
independent columns of A and use them as the K columns of an I by K
matrix U . Since every column of A must be a linear combination of these
K selected ones, there is a K by J matrix M such that A = UM . From
AT = MTUT we conclude that every column of AT is a linear combination
of the K columns of the matrix MT . Therefore, there can be at most K
linearly independent columns of AT .

Definition 5.6 The rank of A is the maximum number of linearly inde-
pendent rows or of linearly independent columns of A.

Proposition 5.1 The rank of C = AB is not greater than the smaller of
the rank of A and the rank of B.

Proof: Every column of C is a linear combination of the columns of A, so
the rank of C cannot exceed that of A. Since the rank of CT is the same
as that of C, the proof is complete.

Definition 5.7 We say that an M by N matrix A has full rank if its rank
is as large as possible; that is, the rank of A is the smaller of the two
numbers M and N .

Definition 5.8 The N by N identity matrix, denoted I, has all its main
diagonal entries equal to 1 and all other entries equal to 0. A square matrix
A is invertible if there is a matrix B such that AB = BA = I. Then B is
the inverse of A and we write B = A−1.

Proposition 5.2 Let A be a square matrix. If there are matrices B and
C such that AB = I and CA = I, then B = C = A−1.

Proof: From AB = I we have C = C(AB) = (CA)B = IB = B.

Proposition 5.3 A square matrix A is invertible if and only if it has full
rank.

Vector Spaces and Matrices 77

Proof: We leave the proof as Exercise 5.3.

Corollary 5.2 A square matrix A is invertible if and only if there is a
matrix B such that AB is invertible.

There are many other conditions that are equivalent to A being invertible;
we list several of these in the next subsection.

5.3.3 The “Matrix Inversion Theorem”

In this subsection we bring together several of the conditions equiv-
alent to saying that an N by N matrix A is invertible. Taken together,
these conditions are sometimes called the “Matrix Inversion Theorem”.
The equivalences on the list are roughly in increasing order of difficulty of
proof. The reader is invited to supply proofs. We begin with the definition
of invertibility.

(1) We say A is invertible if there is a matrix B such that AB = BA = I.
Then B = A−1, the inverse of A.

(2) A is invertible if and only if there are matrices B and C such that
AB = CA = I. Then B = C = A−1.

(3) A is invertible if and only if the rank of A is N .

(4) A is invertible if and only if there is a matrix B with AB = I. Then
B = A−1.

(5) A is invertible if and only if the columns of A are linearly independent.

(6) A is invertible if and only if Ax = 0 implies x = 0.

(7) A is invertible if and only if A can be transformed by elementary row
operations into an upper triangular matrix having no zero entries on
its main diagonal.

(8) A is invertible if and only if its determinant is not zero.

(9) A is invertible if and only if A has no zero eigenvalues.

5.3.4 Systems of Linear Equations

Consider the system of three linear equations in five unknowns given by

x1 + 2x2 + 2x4 +x5 = 0

−x1 − x2 +x3 + x4 = 0

x1 + 2x2 −3x3 − x4 −2x5 = 0.

78 A First Course in Optimization

This system can be written in matrix form as Ax = 0, with A the coefficient
matrix

A =

 1 2 0 2 1
−1 −1 1 1 0
1 2 −3 −1 −2

 ,
and x = (x1, x2, x3, x4, x5)T . Applying Gaussian elimination to this system,
we obtain a second, simpler, system with the same solutions:

x1 − 2x4 +x5 = 0

x2 + 2x4 = 0

x3 + x4 +x5 = 0.

From this simpler system we see that the variables x4 and x5 can be freely
chosen, with the other three variables then determined by this system of
equations. The variables x4 and x5 are then independent, the others de-
pendent. The variables x1, x2 and x3 are then called basic variables. To
obtain a basis of solutions we can let x4 = 1 and x5 = 0, obtaining the
solution x = (2,−2,−1, 1, 0)T , and then choose x4 = 0 and x5 = 1 to
get the solution x = (−1, 0,−1, 0, 1)T . Every solution to Ax = 0 is then a
linear combination of these two solutions. Notice that which variables are
basic and which are non-basic is somewhat arbitrary, in that we could have
chosen as the non-basic variables any two whose columns are independent.

Having decided that x4 and x5 are the non-basic variables, we can write
the original matrix A as A =

[
B N

]
, where B is the square invertible

matrix

B =

 1 2 0
−1 −1 1
1 2 −3

 ,
and N is the matrix

N =

 2 1
1 0
−1 −2

 .
With xB = (x1, x2, x3)T and xN = (x4, x5)T we can write

Ax = BxB +NxN = 0,

so that
xB = −B−1NxN .

5.3.5 Real and Complex Systems of Linear Equations

A system Ax = b of linear equations is called a complex system, or a
real system if the entries of A, x and b are complex, or real, respectively.

Vector Spaces and Matrices 79

For any matrix A, we denote by AT and A† the transpose and conjugate
transpose of A, respectively.

Any complex system can be converted to a real system in the following
way. A complex matrix A can be written as A = A1 + iA2, where A1 and
A2 are real matrices and i =

√
−1. Similarly, x = x1 + ix2 and b = b1 + ib2,

where x1, x2, b1 and b2 are real vectors. Denote by Ã the real matrix

Ã =

[
A1 −A2

A2 A1

]
,

by x̃ the real vector

x̃ =

[
x1

x2

]
,

and by b̃ the real vector

b̃ =

[
b1

b2

]
.

Then x satisfies the system Ax = b if and only if x̃ satisfies the system
Ãx̃ = b̃.

The matrices Ã, x̃ and b̃ are in block-matrix form, meaning that the
entries of these matrices are described in terms of smaller matrices. This is
a convenient shorthand that we shall use repeatedly in this text. When we
write Ãx̃ = b̃, we mean

A1x
1 −A2x

2 = b1,

and
A2x

1 +A1x
2 = b2.

Definition 5.9 A square matrix A is symmetric if AT = A and Hermitian
if A† = A.

Definition 5.10 A nonzero vector x is said to be an eigenvector of the
square matrix A if there is a scalar λ such that Ax = λx. Then λ is said
to be an eigenvalue of A.

If x is an eigenvector of A with eigenvalue λ, then the matrix A − λI
has no inverse, so its determinant is zero; here I is the identity matrix with
ones on the main diagonal and zeros elsewhere. Solving for the roots of the
determinant is one way to calculate the eigenvalues of A. For example, the
eigenvalues of the Hermitian matrix

B =

[
1 2 + i

2− i 1

]
are λ = 1 +

√
5 and λ = 1 −

√
5, with corresponding eigenvectors

u = (
√

5, 2 − i)T and v = (
√

5, i − 2)T , respectively. Then B̃ has the

80 A First Course in Optimization

same eigenvalues, but both with multiplicity two. Finally, the associated
eigenvectors of B̃ are [

u1

u2

]
,

and [
−u2
u1

]
,

for λ = 1 +
√

5, and [
v1

v2

]
,

and [
−v2
v1

]
,

for λ = 1−
√

5.

5.4 LU and QR Factorization

Let S be a real N by N matrix. Two important methods for solving
the system Sx = b, the LU factorization and the QR factorization, involve
factoring the matrix S and thereby reducing the problem to finding the
solutions of simpler systems.

In the LU factorization, we seek a lower triangular matrix L and an
upper triangular matrix U so that S = LU . We then solve Sx = b by
solving Lz = b and Ux = z.

In the QR factorization, we seek an orthogonal matrix Q, that is, QT =
Q−1, and an upper triangular matrix R so that S = QR. Then we solve
Sx = b by solving the upper triangular system Rx = QT b.

5.5 The LU Factorization

The matrix

S =

 2 1 1
4 1 0
−2 2 1

Vector Spaces and Matrices 81

can be reduced to the upper triangular matrix

U =

2 1 1
0 −1 −2
0 0 −4

through three elementary row operations: First, add −2 times the first row
to the second row; second, add the first row to the third row; finally, add
three times the new second row to the third row. Each of these row opera-
tions can be viewed as the result of multiplying on the left by the matrix
obtained by applying the same row operation to the identity matrix. For
example, adding −2 times the first row to the second row can be achieved
by multiplying A on the left by the matrix

L1 =

 1 0 0
−2 1 0
0 0 1

 ;

note that the inverse of L1 is

L−11 =

1 0 0
2 1 0
0 0 1

 .
We can write

L3L2L1S = U,

where L1, L2, and L3 are the matrix representatives of the three elementary
row operations. Therefore, we have

S = L−11 L−12 L−13 U = LU.

This is the LU factorization of S. As we just saw, the LU factorization can
be obtained along with the Gauss elimination.

5.5.1 A Shortcut

There is a shortcut we can take in calculating the LU factorization. We
begin with the identity matrix I, and then, as we perform a row operation,
for example, adding −2 times the first row to the second row, we put the
number 2, the multiplier just used, but with a sign change, in the second
row, first column, the position of the entry of S that was just converted to
zero. Continuing in this fashion, we build up the matrix L as

L =

 1 0 0
2 1 0
−1 −3 1

 ,

82 A First Course in Optimization

so that

S =

 2 1 1
4 1 0
−2 2 1

 =

 1 0 0
2 1 0
−1 −3 1

2 1 1
0 −1 −2
0 0 −4

 .
The entries of the main diagonal of L will be all ones. If we want the

same to be true of U , we can rescale the rows of U and obtain the factor-
ization S = LDU , where D is a diagonal matrix.

5.5.2 A Warning!

We have to be careful when we use the shortcut, as we illustrate now.
For the purpose of this discussion let’s use the terminology Ri + aRj to
mean the row operation that adds a times the jth row to the ith row,
and aRi to mean the operation that multiplies the ith row by a. Now we
transform S to an upper triangular matrix U using the row operations

(1) 1
2R1;

(2) R2 + (−4)R1;

(3) R3 + 2R1;

(4) R3 + 3R2;

(5) (−1)R2; and finally,

(6) (−14)R3.

We end up with

U =

1 1/2 1/2
0 1 2
0 0 1

 .
If we use the shortcut to form the lower triangular matrix L, we find that

L =

 2 0 0
4 −1 0
−2 −3 −4

 .
Let’s go through how we formed L from the row operations listed above.
We get L11 = 2 from the first row operation, L21 = 4 from the second,
L31 = −2 from the third, L32 = −3 from the fourth, L22 = −1 from the
fifth, and L33 = −1

4 from the sixth. But, if we multiple LU we do not get
back S! The problem is that we performed the fourth operation, adding
to the third row three times the second row, before the (2, 2) entry was
rescaled to one. Suppose, instead, we do the row operations in this order:

Vector Spaces and Matrices 83

(1) 1
2R1;

(2) R2 + (−4)R1;

(3) R3 + 2R1;

(4) (−1)R2;

(5) R3 − 3R2; and finally,

(6) (−14)R3.

Then the entry L32 becomes 3, instead of −3, and now LU = S. The
message is that if we want to use the shortcut and we plan to rescale the
diagonal entries of U to be one, we should rescale a given row prior to
adding any multiple of that row to another row; otherwise, we can get the
wrong L. The problem is that certain elementary matrices associated with
row operations do not commute.

We just saw that
L = L−11 L−12 L−13 .

However, when we form the matrix L simultaneously with performing the
row operations, we are, in effect, calculating

L−13 L−12 L−11 .

Most of the time the order doesn’t matter, and we get the correct L anyway.
But this is not always the case. For example, if we perform the operation
1
2R1, followed by R2 + (−4)R1, this is not the same as doing R2 + (−4)R1,
followed by 1

2R1.
With the matrix L1 representing the operation 1

2R1 and the matrix
L2 representing the operation R2 + (−4)R1, we find that storing a 2 in
the (1, 1) position, and then a +4 in the (1, 2) position as we build L is
not equivalent to multiplying the identity matrix by L−12 L−11 but rather
multiplying the identity matrix by

(L−11 L−12 L1)L−11 = L−11 L−12 ,

which is the correct order.
To illustrate this point, consider the matrix S given by

S =

2 1 1
4 1 0
0 0 1

 .
In the first instance, we perform the row operations R2 + (−2)R1, followed
by 1

2R1 to get

U =

1 0.5 0.5
0 −1 −2
0 0 1

 .

84 A First Course in Optimization

Using the shortcut, the matrix L becomes

L =

2 0 0
2 1 0
0 0 1

 ,
but we do not get S = LU . We do have U = L2L1S, where

L1 =

 1 0 0
−2 1 0
0 0 1

 ,
and

L2 =

0.5 0 0
0 1 0
0 0 1

 ,
so that S = L−11 L−12 U and the correct L is

L = L−11 L−12 =

2 0 0
4 1 0
0 0 1

 .
But when we use the shortcut to generate L, we effectively multiply the
identity matrix first by L−11 and then by L−12 , giving the matrix L−12 L−11

as our candidate for L. But L−11 L−12 and L−12 L−11 are not the same. But
why does reversing the order of the row operations work?

When we perform 1
2R1 first, and then R2 + (−4)R1 to get U , we are

multiplying S first by L2 and then by the matrix

E =

 1 0 0
−4 1 0
0 0 1

 .
The correct L is then L = L−12 E−1.

When we use the shortcut, we are first multiplying the identity by the
matrix L−12 and then by a second matrix that we shall call J ; the correct
L must then be L = JL−12 . The matrix J is not E−1, but

J = L−12 E−1L2,

so that
L = JL−12 = L−12 E−1L2L

−1
2 = L−12 E−1,

which is correct.
Note that it may not be possible to obtain A = LDU without first

permuting the rows of A; in such cases we obtain PA = LDU , where P is
obtained from the identity matrix by permuting rows.

Vector Spaces and Matrices 85

Suppose that we have to solve the system of linear equations Ax = b.
Once we have the LU factorization, it is a simple matter to find x: first,
we solve the system Lz = b, and then solve Ux = z. Because both L and
U are triangular, solving these systems is a simple matter. Obtaining the
LU factorization is often better than finding A−1; when A is banded, that
is, has nonzero values only for the main diagonal and a few diagonals on
either side, the L and U retain that banded property, while A−1 does not.

If A is real and symmetric, and if A = LDU , then U = LT , so we have
A = LDLT . If, in addition, the nonzero entries of D are positive, then we
can write

A = (L
√
D)(L

√
D)T ,

which is the Cholesky Decomposition of A.

5.5.3 The QR Factorization and Least Squares

The least-squares solution of Ax = b is the solution of ATAx = AT b.
Once we have A = QR, we have ATA = RTQTQR = RTR, so we find
the least-squares solution easily, by solving RT z = AT b, and then Rx = z.
Note that ATA = RTR is the Cholesky decomposition of ATA.

5.6 Exercises

Ex. 5.1 Prove that the zero vector of a vector space is unique, that each v
has a unique additive inverse −v, and that (−1)v = −v, for all v.

Ex. 5.2 Let W = {w1, ..., wN} be a spanning set for a subspace S in RI ,
and V = {v1, ..., vM} a linearly independent subset of S. Let A be the
matrix whose columns are the vm, B the matrix whose columns are the
wn. Show that there is an N by M matrix C such that A = BC. Prove
Lemma 5.1 by showing that, if M > N , then there is a nonzero vector x
with Cx = Ax = 0.

Ex. 5.3 Prove Proposition 5.3.

Ex. 5.4 Prove that, if L is invertible and lower triangular, then so is L−1.

Ex. 5.5 Show that the symmetric matrix

H =

[
0 1
1 0

]
cannot be written as H = LDLT .

86 A First Course in Optimization

Ex. 5.6 Show that the symmetric matrix

H =

[
0 1
1 0

]
cannot be written as H = LU , where L is lower triangular, U is upper
triangular, and both are invertible.

Ex. 5.7 Let F be an invertible matrix that is the identity matrix, except
for column s. Show that E = F−1 is also the identity matrix, except for
the entries in column s, which can be explicitly calculated from those of F .

Chapter 6

Linear Programming

6.1 Chapter Summary . 87
6.2 Primal and Dual Problems . 88

6.2.1 An Example . 88
6.2.2 Canonical and Standard Forms . 89
6.2.3 From Canonical to Standard and Back 89

6.3 Converting a Problem to PS Form . 90
6.4 Duality Theorems . 91

6.4.1 Weak Duality . 91
6.4.2 Primal-Dual Methods . 92
6.4.3 Strong Duality . 92

6.5 A Basic Strong Duality Theorem . 92
6.6 Another Proof . 94
6.7 Proof of Gale’s Strong Duality Theorem . 97
6.8 Some Examples . 99

6.8.1 The Diet Problem . 99
6.8.2 The Transport Problem . 99

6.9 The Simplex Method . 100
6.10 Yet Another Proof . 102
6.11 The Sherman–Morrison–Woodbury Identity . 102
6.12 An Example of the Simplex Method . 103
6.13 Another Example . 106
6.14 Some Possible Difficulties . 107

6.14.1 A Third Example . 108
6.15 Topics for Projects . 109
6.16 Exercises . 109

6.1 Chapter Summary

The term linear programming (LP) refers to the problem of optimiz-
ing a linear function of several variables over linear equality or inequality
constraints. In this chapter we present the problem and discuss weak and
strong duality and the simplex method. For a much more detailed treat-
ment of linear programming, consult [164].

87

88 A First Course in Optimization

6.2 Primal and Dual Problems

The fundamental problem in linear programming is to minimize the
function

f(x) = 〈c, x〉 = c · x = cTx = z,

over the feasible set F , that is, the convex set of all x ≥ 0 with Ax = b.
This is the primal problem in standard form, denoted PS. The set F is then
the feasible set for PS, and any x in F is called a feasible solution for PS,
or said to be feasible for PS. We shall use theorems of the alternative to
establish the basic facts about LP problems.

Shortly, we shall present an algebraic description of the extreme points
of the feasible set F , in terms of basic feasible solutions, show that there
are at most finitely many extreme points of F and that every member of
F can be written as a convex combination of the extreme points, plus a
direction of unboundedness. These results are also used to prove the basic
theorems about linear programming problems and to describe the simplex
algorithm.

Associated with the basic problem in LP, called the primary problem,
there is a second problem, the dual problem. Both of these problems can be
written in two equivalent ways, the canonical form and the standard form.

6.2.1 An Example

Consider the problem of maximizing the function f(x1x2) = x1 + 2x2,
over all x1 ≥ 0 and x2 ≥ 0, for which the inequalities

x1 + x2 ≤ 40,

and
2x1 + x2 ≤ 60

are satisfied. The set of points satisfying all four inequalities is the region of
R2 bounded by the quadrilateral with vertices (0, 0), (30, 0), (20, 20), and
(0, 40); draw a picture. Since the level curves of the function f are straight
lines, the maximum value must occur at one of these vertices; in fact, it
occurs at (0, 40) and the maximum value of f over the constraint set is 80.
Rewriting the problem as minimizing the function −x1 − 2x2, subject to
x1 ≥ 0, x2 ≥ 0,

−x1 − x2 ≥ −40,

and
−2x1 − x2 ≥ −60,

the problem is now in what is called primal canonical form.

Linear Programming 89

6.2.2 Canonical and Standard Forms

Let b and c be fixed vectors, A a fixed I by J matrix, and x a vector
variable in RJ . The problem

minimize z = cTx, subject toAx ≥ b, x ≥ 0 (PC)

is the so-called primary problem of LP, in canonical form. The dual problem
in canonical form is

maximizew = bT y, subject toAT y ≤ c, y ≥ 0. (DC)

The primary problem, in standard form, is

minimize z = cTx, subject toAx = b, x ≥ 0 (PS)

with the dual problem in standard form given by

maximizew = bT y, subject toAT y ≤ c. (DS)

Notice that the dual problem in standard form does not require that y be
nonnegative. Note also that PS makes sense only if the system Ax = b has
solutions. For that reason, we shall assume, for the standard problems, that
the I by J matrix A has at least as many columns as rows, so J ≥ I, and
A has full rank I.

The primal problem PC can be rewritten in dual canonical form, as

maximize (−c)Tx, subject to (−A)x ≤ −b, x ≥ 0.

The corresponding primal problem is then

minimize (−b)T y, subject to (−A)T y ≥ −c, y ≥ 0,

which can obviously be rewritten as problem DC. This “symmetry”of the
canonical forms will be useful later in proving strong duality theorems.

6.2.3 From Canonical to Standard and Back

If we are given the primary problem in canonical form, we can convert
it to standard form by augmenting the variables, that is, by introducing
the slack variables

ui = (Ax)i − bi,

for i = 1, ..., I, and rewriting Ax ≥ b as

Ãx̃ = b,

for Ã =
[
A −I

]
and x̃ = [xT uT]T . If PC has a feasible solution, then

so does its PS version. If the corresponding dual problem DC is feasible,

90 A First Course in Optimization

then so is its DS version; the new c is c̃ = [cT 0T]T . The quantities z and
w remain unchanged.

If we are given the primary problem in standard form, we can convert
it to canonical form by writing the equations as inequalities, that is, by
replacing Ax = b with the two matrix inequalities Ax ≥ b, and (−A)x ≥ −b
and writing Ãx ≥ b̃, where Ã = [AT − AT]T and b̃ = [bT − bT]T . If the
problem PS is feasible, then so is its PC version. If the corresponding dual
problem DS is feasible, so is DC, where now the new y is ỹ = [uT −
vT]T , where ui = max{yi, 0} and vi = yi − ui. Again, the z and w remain
unchanged.

6.3 Converting a Problem to PS Form

The following example, taken from [137], illustrates the modifications
we may need to make to convert a linear-programming problem to PS form.

Suppose that we want to maximize the function

f(x1, x2, x3, x4) = 5x1 + 3x2 + 3x3 + x4,

subject to
2x2 + x4 = 2,

x1 + x2 + x4 ≤ 3,

−x1 − 2x2 + x3 ≥ 1,

and
x1 ≤ 0, x2, x3 ≥ 0.

First, we introduce stack variables x5 and x7, and surplus variable x6 and
write

2x2 + x4 = 2,

x1 + x2 + x4 + x5 = 3,

−x1 − 2x2 + x3 − x6 = 1,

and
x1 + x7 = 0.

Then we also have
x2, x3, x5, x6, x7 ≥ 0.

Because the variables x1 and x4 are not bounded below, we replace x1 with

Linear Programming 91

−x7 and x4 with 2− 2x2 throughout. Now the problem is to minimize the
function

z = x2 + 3x3 − 5x7,

subject to
−x2 + x5 − x7 = 1,

−2x2 + x3 − x6 + x7 = 1,

and
x2, x3, x5, x6, x7 ≥ 0.

This is the problem in PS form.

6.4 Duality Theorems

The main topics in linear programming are the duality theorems and
the simplex algorithm. In this section we consider duality theorems.

6.4.1 Weak Duality

Consider the problems PS and DS. Say that x is feasible for PS if x ≥ 0
and Ax = b. Let F be the set of such feasible x. Say that y is feasible for
DS if AT y ≤ c. When it is clear from the context which problems we are
discussing, we shall simply say that x and y are feasible.

The Weak Duality Theorem is the following:

Theorem 6.1 Let x and y be feasible vectors. Then

z = cTx ≥ bT y = w.

Corollary 6.1 If z is not bounded below, then there are no feasible y.

Corollary 6.2 If x and y are both feasible, and z = w, then both x and y
are optimal for their respective problems.

The proof of the theorem and its corollaries are left as exercises.

92 A First Course in Optimization

6.4.2 Primal-Dual Methods

The nonnegative quantity cTx− bT y is called the duality gap for x and
y. The complementary slackness condition says that, for optimal x and y,
we have

xj(cj − (AT y)j) = 0,

for each j. Introducing the slack variables sj ≥ 0, for j = 1, ..., J , we can
write the dual problem constraint AT y ≤ c as AT y + s = c. Then the
complementary slackness conditions xjsj = 0 for each j are equivalent to
z = w, so the duality gap is zero. Primal-dual algorithms for solving linear
programming problems are based on finding sequences of vectors {xk},
{yk}, and {sk} that drive xkj s

k
j down to zero, and therefore, the duality

gaps down to zero [164].

6.4.3 Strong Duality

The Strong Duality Theorems make a stronger statement. One such
theorem is the following.

Theorem 6.2 If one of the problems PS or DS has an optimal solution,
then so does the other and z = w for the optimal vectors.

Another strong duality theorem is due to David Gale [115].

Theorem 6.3 (Gale’s Strong Duality Theorem) If both problems PC
and DC have feasible solutions, then both have optimal solutions and the
optimal values are equal.

6.5 A Basic Strong Duality Theorem

In this section we state and prove a basic strong duality theorem that
has, as corollaries, both Theorem 6.2 and Gale’s Strong Duality Theorem
6.3, as well as other theorems of this type. The proof of this basic strong
duality theorem is an immediate consequence of Farkas’ Lemma, which we
repeat here for convenience.

Theorem 6.4 (Farkas’ Lemma)[110] Precisely one of the following is
true:

(1) there is x ≥ 0 such that Ax = b;

(2) there is y such that AT y ≥ 0 and bT y < 0.

Linear Programming 93

We begin with a few items of notation. Let p be the infimum of the
values cTx, over all x ≥ 0 such that Ax = b, with p = ∞ if there are no
such x. Let p∗ be the supremum of the values bT y, over all y such that
AT y ≤ c, with p∗ = −∞ if there are no such y. Let v be the infimum of the
values cTx, over all x ≥ 0 such that Ax ≥ b, with v = ∞ if there are no
such x. Let v∗ be the supremum of the values bT y, over all y ≥ 0 such that
AT y ≤ c, with v∗ = −∞ if there are no such y. Our basic strong duality
theorem is the following.

Theorem 6.5 (A Basic Strong Duality Theorem) If p∗ is finite, then
the primal problem PS has an optimal solution x̂ and cT x̂ = p∗.

Proof: Consider the system of inequalities given in block-matrix form by[
−AT c
0T 1

] [
r
α

]
≥
[
0
0

]
,

and [
−bT p∗

] [r
α

]
< 0.

Here r is a column vector and α is a real number. We show that this system
has no solution.

If there is a solution with α > 0, then y = 1
αr is feasible for the dual

problem DS, but bT y > p∗, contradicting the definition of p∗.
If there is a solution with α = 0, then AT r ≤ 0, and bT r > 0. We know

that the problem DS has feasible vectors, so let ŷ be one such. Then the
vectors ŷ + nr are feasible vectors, for n = 1, 2, But bT (ŷ + nr)→ +∞,
as n increases, contradicting the assumption that p∗ is finite.

Now, by Farkas’ Lemma, there must be x̂ ≥ 0 and β ≥ 0 such that
Ax̂ = b and cT x̂ = p∗ − β ≤ p∗. It follows that x̂ is optimal for the primal
problem PS and cT x̂ = p∗.

Now we reap the harvest of corollaries of this basic strong duality the-
orem. First, recall that LP problems in standard form can be reformulated
as LP problems in canonical form, and vice versa. Also recall the “symme-
try” of the canonical forms; the problem PC can be rewritten in form of
a DC problem, whose corresponding primal problem in canonical form is
equivalent to the original DC problem. As a result, we have the following
corollaries of Theorem 6.5.

Corollary 6.3 Let p be finite. Then DS has an optimal solution ŷ and
bT ŷ = p.

Corollary 6.4 Let v be finite. Then DC has an optimal solution ŷ and
bT ŷ = v.

94 A First Course in Optimization

Corollary 6.5 Let v∗ be finite. Then PC has an optimal solution x̂ and
cT x̂ = v∗.

Corollary 6.6 Let p or p∗ be finite. Then both PS and DS have optimal
solutions x̂ and ŷ, respectively, with cT x̂ = bT ŷ.

Corollary 6.7 Let v or v∗ be finite. Then both PC and DC have optimal
solutions x̂ and ŷ, respectively, with cT x̂ = bT ŷ.

In addition, Theorem 6.2 follows as a corollary, since if either PS or DS
has an optimal solution, then one of p or p∗ must be finite. Gale’s Strong
Duality Theorem 6.3 is also a consequence of Theorem 6.5, since, if both
PC and DC are feasible, then both v and v∗ must be finite.

6.6 Another Proof

We know that Theorem 6.2 is a consequence of Theorem 6.5, which, in
turn, follows from Farkas’ Lemma. However, it is instructive to consider an
alternative proof of Theorem 6.2. For that, we need some definitions and
notation.

Definition 6.1 A point x in F is said to be a basic feasible solution if the
columns of A corresponding to positive entries of x are linearly independent.

Recall that, for PS, we assume that J ≥ I and the rank of A is I.
Consequently, if, for some nonnegative vector x, the columns j for which
xj is positive are linearly independent, then xj is positive for at most I
values of j. Therefore, a basic feasible solution can have at most I positive
entries. For a given set of entries, there can be at most one basic feasible
solution for which precisely those entries are positive. Therefore, there can
be only finitely many basic feasible solutions.

Now let x be an arbitrary basic feasible solution. Denote by B an invert-
ible matrix obtained from A by deleting J−I columns associated with zero
entries of x. Note that, if x has fewer than I positive entries, then some
of the columns of A associated with zero values of xj are retained. The
entries of an arbitrary vector y corresponding to the columns not deleted
are called the basic variables. Then, assuming that the columns of B are
the first I columns of A, we write yT = (yTB , y

T
N), and

A =
[
B N

]
,

so that Ay = ByB +NyN , Ax = BxB = b, and xB = B−1b.

Linear Programming 95

The following theorems are taken from the book by Nash and Sofer
[164]. We begin with a characterization of the extreme points of F (recall
Definition 4.22).

Theorem 6.6 A point x is in Ext(F) if and only if x is a basic feasible
solution.

Proof: Suppose that x is a basic feasible solution, and we write xT =
(xTB , 0

T), A =
[
B N

]
. If x is not an extreme point of F , then there are

y 6= x and z 6= x in F , and α in (0, 1), with

x = (1− α)y + αz.

Then yT = (yTB , y
T
N), zT = (zTB , z

T
N), and yN ≥ 0, zN ≥ 0. From

0 = xN = (1− α)yN + (α)zN

it follows that
yN = zN = 0,

and b = ByB = BzB = BxB . But, since B is invertible, we have xB =
yB = zB . This is a contradiction, so x must be in Ext(F).

Conversely, suppose that x is in Ext(F). Since x is in F , we know that
Ax = b and x ≥ 0. By reordering the variables if necessary, we may assume
that xT = (xTB , x

T
N), with xB > 0 and xN = 0; we do not know that xB is

a vector of length I, however, so when we write A =
[
B N

]
, we do not

know that B is square.
If the columns of B are linearly independent, then, by definition, x is a

basic feasible solution. If the columns of B were not linearly independent,
we could construct y 6= x and z 6= x in F , such that

x =
1

2
y +

1

2
z,

as we now show. If {B1, B2, ..., BK} are the columns of B and are linearly
dependent, then there are constants p1, p2, ..., pK , not all zero, with

p1B1 + ...+ pKBK = 0.

With pT = (p1, ..., pK), we have

B(xB + αp) = B(xB − αp) = BxB = b,

for all α ∈ (0, 1). We then select α so small that both xB + αp > 0 and
xB − αp > 0. Let

yT = (xTB + αpT , 0T)

and
zT = (xTB − αpT , 0T).

Therefore x is not an extreme point of F , which is a contradiction. This
completes the proof.

96 A First Course in Optimization

Corollary 6.8 There are at most finitely many basic feasible solutions, so
there are at most finitely many members of Ext(F).

Theorem 6.7 If F is not empty, then Ext(F) is not empty. In that case,
let {v1, ..., vM} be the members of Ext(F). Every x in F can be written as

x = d+ α1v
1 + ...+ αMv

M , (6.1)

for some αm ≥ 0, with
∑M
m=1 αm = 1, and some direction of unbounded-

ness, d.

Proof: We consider only the case in which F is bounded, so there is no
direction of unboundedness; the unbounded case is similar. Let x be a
feasible point. If x is an extreme point, fine. If not, then x is not a basic
feasible solution and the columns of A that correspond to the positive
entries of x are not linearly independent. Then we can find a vector p such
that Ap = 0 and pj = 0 if xj = 0. If |ε| is small enough, x+ εp is in F and
(x+ εp)j = 0 if xj = 0. Our objective now is to find another member of F
that has fewer positive entries than x has.

We can alter ε in such a way that eventually y = x+ εp has at least one
more zero entry than x has. To see this, let

−ε =
xk
pk

= min
(xj
pj
|xj > 0, pj > 0

)
.

Then the vector x + εp is in F and has fewer positive entries than x has.
Repeating this process, we must eventually reach the point at which there
is no such vector p. At this point, we have obtained a basic feasible solution,
which must then be an extreme point of F . Therefore, the set of extreme
points of F is not empty.

The set G of all x in F that can be written as in Equation (6.1) is a
closed set. Consequently, if there is x in F that cannot be written in this
way, there is a ball of radius r, centered at x, having no intersection with
G. We can then repeat the previous construction to obtain a basic feasible
solution that lies within this ball. But such a vector would be an extreme
point of F , and so would have to be a member of G, which would be a
contradiction. Therefore, every member of F can be written according to
Equation (6.1).

Proof of Theorem 6.2: Suppose now that x∗ is a solution of the problem
PS and z∗ = cTx∗. Without loss of generality, we may assume that x∗ is a
basic feasible solution, hence an extreme point of F . (Why?) Then we can
write

xT∗ = ((B−1b)T , 0T),

cT = (cTB , c
T
N),

Linear Programming 97

and A =
[
B N

]
. We shall show that

y∗ = (B−1)T cB ,

which depends on x∗ via the matrix B, and

z∗ = cTx∗ = yT∗ b = w∗.

Every feasible solution has the form

xT = ((B−1b)T , 0T) + ((B−1Nv)T , vT),

for some v ≥ 0. From cTx ≥ cTx∗ we find that

(cTN − cTBB−1N)(v) ≥ 0,

for all v ≥ 0. It follows that

cTN − cTBB−1N = 0.

Now let y∗ = (B−1)T cB , or yT∗ = cTBB
−1. We show that y∗ is feasible for

DS; that is, we show that
AT y∗ ≤ cT .

Since
yT∗ A = (yT∗ B, y

T
∗ N) = (cTB , y

T
∗ N) = (cTB , c

T
BB
−1N)

and
cTN ≥ cTBB−1N,

we have
yT∗ A ≤ cT ,

so y∗ is feasible for DS. Finally, we show that

cTx∗ = yT∗ b.

We have
yT∗ b = cTBB

−1b = cTx∗.

This completes the proof.

6.7 Proof of Gale’s Strong Duality Theorem

As we have seen, Gale’s Strong Duality Theorem 6.3 is a consequence
of Theorem 6.5, and so follows from Farkas’ Lemma. Gale’s own proof,

98 A First Course in Optimization

which we give below, is somewhat different, in that he uses Farkas’ Lemma
to obtain Theorem 4.11, and then the results of Theorem 4.11 to prove
Theorem 6.3.

We show that there are nonnegative vectors x and y such that Ax ≥ b,
AT y ≤ c, and bT y − cTx ≥ 0. It will then follow that z = cTx = bT y = w,
so that x and y are both optimal. In matrix notation, we want to find x ≥ 0
and y ≥ 0 such that

 A 0
0 −AT
−cT bT

[x
y

]
≥

 b
−c
0

 . (6.2)

In order to use Theorem 4.11, we rewrite (6.2) as−A 0
0 AT

cT −bT

[x
y

]
≤

−bc
0

 . (6.3)

We assume that there are no x ≥ 0 and y ≥ 0 for which the inequalities in
(6.3) hold. Then, according to Theorem 4.11, there are nonnegative vectors
s and t, and nonnegative scalar ρ such that

[
−AT 0 c

0 A −b

]st
ρ

 ≥ 0,

and [
−bT cT 0

] st
ρ

 < 0.

Note that ρ cannot be zero, for then we would have AT s ≤ 0 and
At ≥ 0. Taking feasible vectors x and y, we would find that sTAx ≤ 0,
which implies that bT s ≤ 0, and tTAT y ≥ 0, which implies that cT t ≥ 0.
Therefore, we could not also have cT t− bT s < 0.

Writing out the inequalities, we have

ρcT t ≥ sTAt ≥ sT (ρb) = ρsT b.

Using ρ > 0, we find that
cT t ≥ bT s,

which is a contradiction. Therefore, there do exist x ≥ 0 and y ≥ 0 such
that Ax ≥ b, AT y ≤ c, and bT y − cTx ≥ 0.

Linear Programming 99

6.8 Some Examples

We give two well known examples of LP problems.

6.8.1 The Diet Problem

There are nutrients indexed by i = 1, ..., I and our diet must contain at
least bi units of the ith nutrient. There are J foods, indexed by j = 1, ..., J ,
and one unit of the jth food costs cj dollars and contains Aij units of the
ith nutrient. The problem is to minimize the cost, while obtaining at least
the minimum amount of each nutrient.

Let xj ≥ 0 be the amount of the jth food that we consume. Then we
need Ax ≥ b, where A is the matrix with entries Aij , b is the vector with
entries bi and x is the vector with entries xj ≥ 0. With c the vector with
entries cj , the total cost of our food is z = cTx. The problem is then to
minimize z = cTx, subject to Ax ≥ b and x ≥ 0. This is the primary LP
problem, in canonical form.

6.8.2 The Transport Problem

We must ship products from sources to destinations. There are I
sources, indexed by i = 1, ..., I, and J destinations, indexed by j = 1, ..., J .
There are ai units of product at the ith source, and we must have at least
bj units reaching the jth destination. The customer will pay Cij dollars
to get one unit from i to j. Let xij be the number of units of product
to go from the ith source to the jth destination. The producer wishes to
maximize income, that is,

maximize
∑
i,j

Cijxij ,

subject to
xij ≥ 0,

I∑
i=1

xij ≥ bj ,

and
J∑
j=1

xij ≤ ai.

100 A First Course in Optimization

Obviously, we must assume that

I∑
i=1

ai ≥
J∑
j=1

bj .

This problem is not yet in the form of the LP problems considered so far.
It also introduces a new feature, namely, it may be necessary to have xij
a nonnegative integer, if the products exist only in whole units. This leads
to integer programming.

6.9 The Simplex Method

In this section we sketch the main ideas of the simplex method. For
further details see [164].

Begin with x̂, a basic feasible solution of PS. Assume, as previously,
that

A =
[
B N

]
,

where B is an I by I invertible matrix obtained by deleting from A some
(but perhaps not all) columns associated with zero entries of x̂. As before,
we assume the variables have been ordered so that the zero entries of x̂
have the highest index values. The entries of an arbitrary x corresponding
to the first I columns are the basic variables. We write xT = (xTB , x

T
N), so

that x̂N = 0, Ax̂ = Bx̂B = b, and x̂B = B−1b. The current value of z is

ẑ = cTBx̂B = cTBB
−1b.

We are interested in what happens to z as xN takes on positive entries.
For any feasible x we have Ax = b = BxB +Nxn, so that

xB = B−1b−B−1NxN ,

and

z = cTx = cTBxB + cTNxN = cTB(B−1b−B−1NxN) + cTNxN .

Therefore,

z = cTBB
−1b+ (cTN − cTBB−1N)xN = ẑ + rTxN ,

where
rT = (cTN − cTBB−1N).

Linear Programming 101

The vector r is called the reduced cost vector. We define the vector yT =
cTBB

−1 of simplex multipliers, and write

z − ẑ = rTxN = (cTN − yTN)xN .

We are interested in how z changes as we move away from x̂ and permit
xN to have positive entries.

If xN is nonzero, then z changes by rTxN . Therefore, if r ≥ 0, the
current ẑ cannot be made smaller by letting xN have some positive entries;
the current x̂ is then optimal. Initially, at least, r will have some negative
entries, and we use these as a guide in deciding how to select xN .

Keep in mind that the vectors xN and r have length J − I and the jth
column of N is the (I + j)th column of A.

Select an index j such that

rj < 0,

and rj is the most negative of the negative entries of r. Then xI+j is called
the entering variable. Compute dj = B−1aj , where aj is the (I + j)th
column of A, which is the jth column of N . If we allow (xN)j = xI+j to
be positive, then

xB = B−1b− xI+jB−1aj = B−1b− xI+jdj .

We need to make sure that xB remains nonnegative, so we need

(B−1b)i − xI+jdji ≥ 0,

for all indices i = 1, ..., I. If the ith entry dji is negative, then (xB)i increases

as xI+j becomes positive; if dji = 0, then (xB)i remains unchanged. The

problem arises when dji is positive.
Find an index s in {1, ..., I} for which

(B−1b)s

djs
= min

{ (B−1b)i

dji
: dji > 0

}
. (6.4)

Then xs is the leaving variable, replacing xI+j ; that is, the new set of
indices corresponding to new basic variables will now include I + j, and no
longer include s. The new entries of x̂ are x̂s = 0 and

x̂I+j =
(B−1b)s

djs
.

We then rearrange the columns of A to redefine B and N , and rearrange
the positions of the entries of x, to get the new basic variables vector xB ,
the new xN and the new c. Then we repeat the process.

102 A First Course in Optimization

6.10 Yet Another Proof

Previously, we showed that Theorem 6.2 can be obtained as a corollary
of the Basic Strong Duality Theorem 6.5. Now we show that Theorem 6.2
follows from the calculations involved in the simplex method.

Suppose that the problem PS has an optimal solution, x̂. Then the
vector ŷ with ŷT = cTBB

−1 becomes a feasible vector for the dual problem
and an optimal solution for DS. Clearly, since x̂B = B−1b, we have

ẑ = cT x̂ = cTBB
−1b = ŷT b.

We know that
rT = cTN − ŷTN ≥ 0,

so that
ŷTA = [ŷTB ŷTN] ≤ [cTB cTN] = cT .

Therefore, ŷ is feasible for DS and

ŵ = ŷT b = ẑ.

It is interesting to note that this proof does not rely on the Bolzano–
Weierstrass Theorem or any other equivalent statement of compactness.
The Basic Strong Duality Theorem 6.5 relies on Farkas’ Lemma, which uses
orthogonal projection, and therefore the Bolzano–Weierstrass Theorem. We
could say, therefore, that Theorem 6.2 is a relatively “weak” strong duality
theorem.

6.11 The Sherman–Morrison–Woodbury Identity

It is helpful to note that when the columns of A are rearranged and a
new B is defined, the new B differs from the old B in only one column.
Therefore

Bnew = Bold − uvT , (6.5)

where u is the column vector that equals the old column minus the new
one, and v is the column of the identity matrix corresponding to the column
of Bold being altered. In Exercise 6.5 the reader is asked to prove that

1− vTB−1oldu 6= 0.

Linear Programming 103

Once we know that, the inverse of Bnew can be obtained fairly easily from
the inverse of Bold using the Sherman–Morrison–Woodbury Identity.

In Exercise 6.4 the reader is asked to show that, if B is invertible, then

(B − uvT)−1 = B−1 + α−1(B−1u)(vTB−1),

whenever
α = 1− vTB−1u 6= 0,

and, if α = 0, then the matrix B − uvT has no inverse. We shall illustrate
this in the example below.

For large-scale problems, issues of storage, computational efficiency and
numerical accuracy become increasingly important [203]. For such prob-
lems, other ways of updating the matrix B−1 are used.

Let F be the identity matrix, except for having the vector dj as column
s. It is easy to see that Bnew = BF , so that (Bnew)−1 = EB−1, where
E = F−1. In Exercise 5.7 you are asked to show that E is also the identity
matrix, except for the entries in column s, which can be explicitly calculated
(see [164]). Therefore, as the simplex iteration proceeds, the next (Bnew)−1

can be represented as

(Bnew)−1 = EkEk−1 · · · E1B
−1,

where B is the original matrix selected at the beginning of the calculations,
and the other factors are the E matrices used at each step.

Another approach is to employ the LU -decomposition method for solv-
ing systems of linear equations, with numerically stable procedures for up-
dating the matrices L and U as the columns of B are swapped. Finding
methods for doing this is an active area of research [203].

6.12 An Example of the Simplex Method

Consider once again the problem of maximizing the function f(x1, x2) =
x2 + 2x2, over all x1 ≥ 0 and x2 ≥ 0, for which the inequalities

x1 + x− 2 ≤ 40,

and
2x1 + x− 2 ≤ 60

are satisfied. As we saw previously, this problem, in primary canonical form,
is the following: Minimize the function −x1−2x2, subject to x1 ≥ 0, x2 ≥ 0,

−x1 − x2 ≥ −40,

104 A First Course in Optimization

and
−2x1 − x− 2 ≥ −60.

With bT = (−40,−60)T , and, temporarily, cT = (1, 2)T , A the matrix

A =

[
−1 −1
−2 −1

]
,

and the vector x = (x1, x2)T , the function to be minimized is z = cTx and
the constraints are Ax ≥ b, and the vector x has nonnegative entries, that
is, x ≥ 0. This is the problem in PC form.

We say that the definitions of cT , A and x = (x1, y2)T are only tempo-
rary because, first of all, once we have converted the problem to PS form,
the vector x will change size, and have more entries, so A will then have
more columns and cT more entries, and second, at each step of the simplex
algorithm, two of the entries of x change places, so two columns of A must
be switched and two entries of cT must also be exchanged.

Before applying the simplex algorithm, we convert this problem to PS
form using slack variables. In PS form, the problem is to minimize the
function −x1 − 2x2, subject to

−x1 − x2 − x3 = −40,

−2x1 − x2 − x− 4 = −60,

and
x1, x2, x3, x4 ≥ 0.

The four vertices of the feasible region can be described using these
four variables as follows: the points (0, 0), (30, 0), (20, 20), and (0, 40)
in the x1, x2 plane become (0, 0, 40, 60), (30, 0, 10, 0), (20, 20, 0, 0) and
(0, 40, 0, 20), respectively, and these four points in the variables x1, x2,
x3, and x4 are the basic feasible solutions. Note that each one has no more
than I = 2 positive entries.

We begin the simplex algorithm by selecting one of the four basic fea-
sible solutions; here we select the point (20, 20, 0, 0). The variables x1 and
x2 are now the basic variables, since they correspond to positive entries of
our starting vertex. Since x1 and x2 were already the first two entries of
the vector x, there is no need to redefine the variables in this case.

The constraint Ax ≥ b is now Ax = b, where the matrix A has become

A =

[
−1 −1 −1 0
−2 −1 0 −1

]
.

Since x1 and x2 are the basic variables, the matrix B is

B =

[
−1 −1
−2 −1

]
,

Linear Programming 105

with inverse

B−1 =

[
1 −1
−2 1

]
,

and the matrix N is

N =

[
−1 0
0 −1

]
.

The vector b is b = (−40,−60)T . For a general vector x = (x1, x2, x3, x4)T ,
we write xB = (x1, x2)T and xN = (x3, x4)T . For c = (−1,−2, 0, 0)T , we
write cB = (−1,−2)T and cN = (0, 0)T . We let our starting vector be
x̂ = (20, 20, 0, 0)T , so that x̂B = B−1b = (20, 20)T , and x̂N = (0, 0)T . Then
we find that yT = cTBB

−1 = (3,−1), and yTN = (−3, 1). The reduced cost
vector is then

rT = cTN − yTN = (0, 0)− (−3, 1) = (3,−1).

Since rT has a negative entry in its second position, j = 2, we learn that
the entering variable is going to be x2+j = x4. The fourth column of A is
(0,−1)T , so the vector d2 is

d2 = B−1(0,−1)T = (1,−1)T .

Therefore, we must select a new positive value for x4 that satisfies

(20, 20) ≥ x4(1,−1).

The single positive entry of d2 is the first one, from which we conclude that
the leaving variable will be x1. We therefore select as the new values of the
variables x̂1 = 0, x̂2 = 40, x̂3 = 0, and x̂4 = 20. We then reorder the vari-
ables as x = (x4, x2, x3, x1)T and rearrange the columns of A accordingly.
Having done this, we see that we now have

B = Bnew =

[
0 −1
−1 −1

]
,

with inverse

B−1 =

[
1 −1
−1 0

]
,

and the matrix N is

N =

[
−1 −1
0 −2

]
.

Since

Bnew = Bold −
[
−1
−1

] [
1 0

]
,

we can apply the Sherman–Morrison–Woodbury Identity to get B−1new.
The reduced cost vector is now rT = (2, 1). Since it has no negative

entries, we have reached the optimal point; the solution is x̂1 = 0, x̂2 = 40,
with slack variables x̂3 = 0 and x̂4 = 20.

106 A First Course in Optimization

6.13 Another Example

The following example is taken from Fang and Puthenpura [109]. Min-
imize the function

f(x1, x2, x3, x4, x5, x6) = −x1 − x2 − x3,

subject to
2x1 + x4 = 1;

2x2 + x5 = 1;

2x3 + x6 = 1;

and xi ≥ 0, for i = 1, ..., 6. The variables x4, x5, and x6 appear to be slack
variables, introduced to obtain equality constraints.

Initially, we define the matrix A to be

A =

 2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1

 ,
b = (1, 1, 1)T , c = (−1,−1,−1, 0, 0, 0)T and x = (x1, x2, x3, x4, x5, x6)T .

Suppose we begin with x4, x5, and x6 as the basic variables. Since the
entries of the vector b are positive, it is a simple matter to find an initial
basic feasible solution; it is x4 = 1, x5 = 1, and x6 = 1. We then rearrange
the entries of the vector of unknowns so that

x = (x4, x5, x6, x1, x2, x3)T .

Now we have to rearrange the columns of A as well; the new A is

A =

 1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2

 .
The vector cmust also be redefined; the new one is c = (0, 0, 0,−1,−1,−1)T ,
so that cN = (−1,−1,−1)T and cB = (0, 0, 0)T .

For this first step of the simplex method we have

B =

1 0 0
0 1 0
0 0 1

 ,
and

N =

2 0 0
0 2 0
0 0 2

 .

Linear Programming 107

Note that one advantage in choosing the slack variables as the basic vari-
ables is that it is easy then to find the corresponding basic feasible solution,
which is now

x̂ =

x̂4
x̂5
x̂6
x̂1
x̂2
x̂3

 =

[
x̂B
x̂N

]
=

1
1
1
0
0
0

 .
The reduced cost vector r is then

r = (−1,−1,−1)T ;

since it has negative entries, the current basic feasible solution is not opti-
mal.

Suppose that we select a non-basic variable with negative reduced cost,
say x1, which, we must remember, is the fourth entry of the redefined x, so
j = 1 and I + j = 4. Then x1 is the entering basic variable, and the vector
d1 is then

d1 = B−1aj = (2, 0, 0)T .

The only positive entry of d1 is the first one, which means, according to
Equation (6.4), that the exiting variable should be x4. Now the new set
of basic variables is {x5, x6, x1} and the new set of non-basic variables is
{x2, x3, x4}. The new matrices B and N are

B =

0 0 2
1 0 0
0 1 0

 ,
and

N =

 0 0 1
2 0 0
0 2 0

 .
Continuing through two more steps, we find that the optimal solution is
−3/2, and it occurs at the vector

x = (x1, x2, x3, x4, x5, x6)T = (1/2, 1/2, 1/2, 0, 0, 0)T .

6.14 Some Possible Difficulties

In the first example of the simplex method, we knew all four of the
vertices of the feasible region, so we could choose any one of them to get

108 A First Course in Optimization

our initial basic feasible solution. We chose to begin with x1 and x2 as our
basic variables, which meant that the slack variables were zero and our first
basic feasible solution was x̂ = (20, 20, 0, 0)T . In the second example, we
chose the slack variables to be the initial basic variables, which made it
easy to find the initial basic feasible solution. Generally, however, finding
an initial basic feasible solution may not be easy.

You might think that we can always simply take the slack variables as
our initial basic variables, so that the initial B is just the identity matrix,
and the initial basic feasible solution is merely the concatenation of the
column vectors b and 0, as in the second example. The following example
shows why this may not always work.

6.14.1 A Third Example

Consider the problem of minimizing the function z = 2x1+3x2, subject
to

3x1 + 2x2 = 14,

2x1 − 4x2 − x3 = 2,

4x1 + 3x2 + x4 = 19, and

xi ≥ 0,

for i = 1, ..., 4. The matrix A is now

A =

3 2 0 0
2 −4 −1 0
4 3 0 1

 .
There are only two slack variables, so we cannot construct our set of basic
variables using only slack variables, since the matrix B must be square. We
cannot begin with x̂1 = x̂2 = 0, since this would force x̂3 = −2, which is
not permitted. We can choose x̂2 = 0 and solve for the other three, to get
x̂1 = 14

3 , x̂3 = 22
3 , and x̂4 = 1

3 . This is relatively easy only because the
problem is artificially small. The point here is that, for realistically large
LP problems, finding a place to begin the simplex algorithm may not be a
simple matter. For more on this matter, see [164].

In both of our first two examples, finding the inverse of the matrix B
is easy, since B is only 2 by 2, or 3 by 3. In larger problems, finding B−1,
or better, solving yTB = cTB for yT , is not trivial and can be an expen-
sive part of each iteration. The Sherman–Morrison–Woodbury identity is
helpful here.

Linear Programming 109

6.15 Topics for Projects

The simplex method provides several interesting topics for projects.

(1) Investigate the issue of finding a suitable starting basic feasible solu-
tion. Reference [164] can be helpful in this regard.

(2) How can we reduce the cost associated with solving yTB = cTB for yT

at each step of the simplex method?

(3) Suppose that, instead of needing the variables to be nonnegative, we
need each xi to lie in the interval [αi, βi]. How can we modify the
simplex method to incorporate these constraints?

(4) Investigate the role of linear programming and the simplex method in
graph theory and networks, with particular attention to the transport
problem.

(5) There is a sizable literature on the computational complexity of the
simplex method. Investigate this issue and summarize your findings.

6.16 Exercises

Ex. 6.1 Prove Theorem 6.1 and its corollaries.

Ex. 6.2 Use Farkas’ Lemma directly to prove that, if p∗ is finite, then PS
has a feasible solution.

Ex. 6.3 Put the Transport Problem into the form of an LP problem in DS
form.

Ex. 6.4 The Sherman–Morrison–Woodbury Identity Let B be an
invertible matrix. Show that

(B − uvT)−1 = B−1 + α−1(B−1u)(vTB−1),

whenever
α = 1− vTB−1u 6= 0.

Show that, if α = 0, then the matrix B − uvT has no inverse.

Ex. 6.5 Show that Bnew given in Equation (6.5) is invertible.

110 A First Course in Optimization

Ex. 6.6 Complete the calculation of the optimal solution for the problem
in the second example of the simplex method.

Ex. 6.7 Consider the following problem, taken from [109]. Minimize the
function

f(x1, x2, x3, x4) = −3x1 − 2x2,

subject to
x1 + x2 + x3 = 40,

2x1 + x2 + x4 = 60,

and
xj ≥ 0,

for j = 1, ..., 4. Use the simplex method to find the optimum solution. Take
as a starting vector x0 = (0, 0, 40, 60)T .

Ex. 6.8 In the first example on the simplex method, the new value of x2
became 40. Explain why this was the case.

Ex. 6.9 Redo the first example of the simplex method, starting with the
vertex x1 = 0 and x2 = 0.

Ex. 6.10 Consider the LP problem of maximizing the function f(x1, x2) =
x1 + 2x2, subject to

−2x1 + x2 ≤ 2,

−x1 + 2x2 ≤ 7,

x1 ≤ 3,

x1 ≥ 0, and

x2 ≥ 0.

Start at x1 = 0, x2 = 0. You will find that you have a choice for the
entering variable; try it both ways.

Ex. 6.11 Carry out the next two steps of the simplex algorithm for the
second example given earlier.

Ex. 6.12 Apply the simplex method to minimize z = −x1−2x2, subject to

−x1 + x2 ≤ 2,

−2x1 + x2 ≤ 1,

x1 ≥ 0, and

x2 ≥ 0.

Chapter 7

Matrix Games and Optimization

7.1 Chapter Summary . 111
7.2 Two-Person Zero-Sum Games . 112
7.3 Deterministic Solutions . 112

7.3.1 Optimal Pure Strategies . 112
7.4 Randomized Solutions . 113

7.4.1 Optimal Randomized Strategies . 114
7.4.2 An Exercise . 115
7.4.3 The Min-Max Theorem . 116

7.5 Symmetric Games . 117
7.5.1 An Example of a Symmetric Game . 118
7.5.2 Comments on the Proof of the Min-Max Theorem 118

7.6 Positive Games . 118
7.6.1 Some Exercises . 119
7.6.2 Comments . 119

7.7 Example: The “Bluffing” Game . 119
7.8 Learning the Game . 121

7.8.1 An Iterative Approach . 122
7.8.2 An Exercise . 122

7.9 Non-Constant-Sum Games . 123
7.9.1 The Prisoners’ Dilemma . 123
7.9.2 Two Payoff Matrices Needed . 123
7.9.3 An Example: Illegal Drugs in Sports . 124

7.1 Chapter Summary

All the optimization problems discussed so far have involved a single
individual trying to maximize or minimize some function. In 1928 the math-
ematician John von Neumann introduced the theory of games in an attempt
to deal with the more general problem of two or more individuals in com-
petition and to make economics more scientific. The theory of games was
developed somewhat later by von Neumann and Morgenstern [167] and
has become an important tool, not only in economics, but throughout the
social sciences. Two-person zero-sum games provide a nice example of opti-

111

112 A First Course in Optimization

mization and an opportunity to apply some of the linear algebra and linear
programming tools previously discussed. In this chapter we introduce the
idea of two-person matrix games and use results from linear programming
to prove von Neumann’s “Minimax Theorem,” also called the Fundamental
Theorem of Game Theory. Our focus here is on the mathematics; the DVD
course by Stevens [193] provides a less mathematical introduction to game
theory, with numerous examples drawn from business and economics. The
classic book by Schelling [184] describes the roles played by game theory
in international politics and warfare.

7.2 Two-Person Zero-Sum Games

A two-person game is called a constant-sum game if the total payout
is the same, each time the game is played. In such cases, we can subtract
half the total payout from the payout to each player and record only the
difference. Then the total payout appears to be zero, and such games are
called zero-sum games. We can then suppose that whatever one player wins
is paid by the other player. Except for the final section, we shall consider
only two-person, zero-sum games.

7.3 Deterministic Solutions

In this two-person game, the first player, call him P1, selects a row of
the I by J real matrix A, say i, and the second player selects a column
of A, say j. The second player, call her P2, pays the first player Aij . If
some Aij < 0, then this means that the first player pays the second. Since
whatever the first player wins, the second loses, and vice versa, we need
only one matrix to summarize the situation. Note that, even though we
label the players in order, their selections are made simultaneously and
without knowledge of the other player’s selection.

7.3.1 Optimal Pure Strategies

In our first example, the matrix is

A =

[
7 8 4
4 7 2

]
. (7.1)

Matrix Games and Optimization 113

The first player notes that by selecting row i = 1, he will get at least 4,
regardless of which column the second player plays. The second player notes
that, by playing column j = 3, she will pay the first player no more than 4,
regardless of which row the first player plays. If the first player then begins
to play i = 1 repeatedly, and the second player notices this consistency,
she will still have no motivation to play any column except j = 3, because
the other payouts are both worse than 4. Similarly, so long as the second
player is playing j = 3 repeatedly, the first player has no motivation to
play anything other than i = 1, since he will be paid less if he switches.
Therefore, both players adopt a pure strategy of i = 1 and j = 3. This game
is said to be deterministic and the entry A1,3 = 4 is a saddle point because
it is the maximum of its column and the minimum of its row.

Note that we can write

Ai,3 ≤ A1,3 ≤ A1,j ,

so we have
max
i

min
j
Aij = 4 = min

j
max
i
Aij .

Once the two players play (1, 3) neither has any motivation to change. For
this reason the entry A1,3 is called a Nash equilibrium. The value A1,3 = 4
is the maximum of the minimum wins the first player can have, and also
the minimum of the maximum losses the second player can suffer. Not all
such two-person games have saddle points, however.

Consider now the two-person game with payoff matrix

B =

[
4 1
2 3

]
. (7.2)

Unlike the matrix A in Equation (7.1), the matrix B in Equation (7.2)
has no saddle point; no entry of B is the maximum of its column and the
minimum of its row. For such games we need to use randomized strategies.

7.4 Randomized Solutions

When the game has no saddle point, there is no optimal deterministic
solution. Instead, we consider approaches that involve selecting our strate-
gies according to some random procedure, and seek an optimal randomized
strategy.

114 A First Course in Optimization

7.4.1 Optimal Randomized Strategies

Consider the game described by the matrix B in Equation (7.2). The
first player notes that by selecting row i = 2, he will get at least 2, regardless
of which column the second player plays. The second player notes that,
by playing column j = 2, she will pay the first player no more than 3,
regardless of which row the first player plays. If both begin by playing in
this conservative manner, the first player will play i = 2 and the second
player will play j = 2.

If the first player plays i = 2 repeatedly, and the second player notices
this consistency, she will be tempted to switch to playing column j = 1,
thereby losing only 2, instead of 3. If she makes the switch and the first
player notices, he will be motivated to switch his play to row i = 1, to
get a payoff of 4, instead of 2. The second player will then soon switch
to playing j = 2 again, hoping that the first player sticks with i = 1.
But the first player is not stupid, and quickly returns to playing i = 2.
There is no saddle point in this game; the maximum of the minimum wins
the first player can have is 2, but the minimum of the maximum losses
the second player can suffer is 3. For such games, it makes sense for both
players to select their play at random, with the first player playing i = 1
with probability p and i = 2 with probability 1− p, and the second player
playing column j = 1 with probability q and j = 2 with probability 1− q.
These are called randomized strategies.

When the first player plays i = 1, he expects to get 4q+(1−q) = 3q+1,
and when he plays i = 2 he expects to get 2q+ 3(1− q) = 3− q. Note that
3q+ 1 = 3− q when q = 0.5, so if the second player plays q = 0.5, then the
second player will not care what the first player does, since the expected
payoff to the first player is 5/2 in either case. If the second player plays a
different q, then the payoff to the first player will depend on what the first
player does, and can be larger than 5/2.

Since the first player plays i = 1 with probability p, he expects to get

p(3q + 1) + (1− p)(3− q) = 4pq − 2p− q + 3 = (4p− 1)q + 3− 2p.

He notices that if he selects p = 1
4 , then he expects to get 5

2 , regardless
of what the second player does. If he plays something other than p = 1

4 ,
his expected winnings will depend on what the second player does. If he
selects a value of p less than 1

4 , and q = 1 is selected, then he wins 2p+ 2,
but this is less than 5

2 . If he selects p > 1
4 and q = 0 is selected, then he

wins 3 − 2p, which again is less than 5
2 . The maximum of these minimum

payoffs occurs when p = 1
4 and the max-min win is 5

2 .
Similarly, the second player, noticing that

p(3q + 1) + (1− p)(3− q) = (4q − 2)p+ 3− q,

sees that she will pay out 5
2 if she takes q = 1

2 . If she selects a value of q

Matrix Games and Optimization 115

less than 1
2 , and p = 0 is selected, then she pays out 3 − q, which is more

than 5
2 . If, on the other hand, she selects a value of q that is greater than

1
2 , and p = 1 is selected, then she will pay out 3q+1, which again is greater
than 5

2 . The only way she can be certain to pay out no more than 5
2 is to

select q = 1
2 . The minimum of these maximum payouts occurs when she

chooses q = 1
2 , and the min-max payout is 5

2 . The choices of p = 1
4 and

q = 1
2 constitute a Nash equilibrium, because, once these choices are made,

neither player has any reason to change strategies.
This leads us to the question of whether or not there will always be

probability vectors for the players that will lead to the equality of the
max-min win and the min-max payout.

We make a notational change at this point. From now on the letters
p and q will denote probability column vectors, and not individual proba-
bilities, as previously. Note that, in general, since Ai,j is the payout to P1
when (i, j) is played, for i = 1, ..., I and j = 1, ..., J , and the probability
that (i, j) will be played is piqj , the expected payout to P1 is

I∑
i=1

J∑
j=1

piAi,jqj = pTAq.

The probabilities p̂ and q̂ will be optimal randomized strategies if

pTAq̂ ≤ p̂TAq̂ ≤ p̂TAq,

for any probabilities p and q. Once again, we have a Nash equilibrium,
since once the optimal strategies are the chosen ones, neither player has
any motivation to adopt a different randomized strategy.

7.4.2 An Exercise

Ex. 7.1 Suppose that there are two strains of flu virus and two types of
vaccine. The first vaccine, call it V1, is 0.85 effective against the first strain
(F1) and 0.70 effective against the second (F2), while the second vaccine
(V2) is 0.60 effective against F1 and 0.90 effective against F2. The public
health service is the first player, P1, and nature is the second player, P2.
The service has to decide what percentage of the vaccines manufactured and
made available to the public are to be of type V1 and what percentage are
to be of type V2, while not knowing what percentage of the flu virus is F1
and what percentage is F2. Set this up as a matrix game and determine
how the public health service should proceed.

116 A First Course in Optimization

7.4.3 The Min-Max Theorem

Let A be an I by J payoff matrix. Let

P =
{
p = (p1, ..., pI)

T | pi ≥ 0,

I∑
i=1

pi = 1
}
,

Q =
{
q = (q1, ..., qJ)T | qj ≥ 0,

J∑
j=1

qj = 1
}
,

and
R = A(Q) = {Aq |q ∈ Q}.

The first player selects a vector p in P and the second selects a vector q in
Q. The expected payoff to the first player is

E = 〈p,Aq〉 = pTAq.

Let
m0 = max

p∈P
min
r∈R
〈p, r〉,

and
m0 = min

r∈R
max
p∈P
〈p, r〉;

the interested reader may want to prove that the maximum and minimum
exist. Clearly, we have

min
r∈R
〈p, r〉 ≤ 〈p, r〉 ≤ max

p∈P
〈p, r〉,

for all p ∈ P and r ∈ R. It follows that m0 ≤ m0. The Min-Max Theorem,
also known as the Fundamental Theorem of Game Theory, asserts that
m0 = m0.

Theorem 7.1 The Fundamental Theorem of Game Theory Let A
be an arbitrary real I by J matrix. Then there are vectors p̂ in P and q̂ in
Q such that

pTAq̂ ≤ p̂TAq̂ ≤ p̂TAq, (7.3)

for all p in P and q in Q.

The quantity ω = p̂TAq̂ is called the value of the game. Notice that
if P1 knows that P2 plays according to the mixed-strategy vector q, P1
could examine the entries (Aq)i, which are his expected payoffs should
he play strategy i, and select the one for which this expected payoff is
largest. However, if P2 notices what P1 is doing, she can abandon q to her

Matrix Games and Optimization 117

advantage. When q = q̂, it follows, from the inequalities in (7.3) by using
p with the ith entry equal to one and the rest zero, that

(Aq̂)i ≤ ω
for all i, and

(Aq̂)i = ω

for all i for which p̂i > 0. So there is no long-term advantage to P1 to move
away from p̂.

There are a number of different proofs of the Fundamental Theorem,
including one using Fenchel Duality. In this chapter we consider proofs
based on linear-algebraic methods, linear programming, and theorems of
the alternative.

7.5 Symmetric Games

A game is said to be symmetric if the available strategies are the same
for both players, and if the players switch strategies, the outcomes switch
also. In other words, the payoff matrix A is skew-symmetric, that is, A is
square and Aji = −Aij . For symmetric games, we can use Theorem 4.12
to prove the existence of a randomized solution.

First, we show that there is a probability vector p̂ ≥ 0 such that p̂TA ≥
0. Then we show that

pTAp̂ ≤ 0 = p̂TAp̂ ≤ p̂TAq,
for all probability vectors p and q. It will then follow that p̂ and q̂ = p̂ are
the optimal mixed strategies.

If there is no nonzero x ≥ 0 such that xTA ≥ 0, then there is no nonzero
x ≥ 0 such that ATx ≥ 0. Then, by Theorem 4.12, we know that there is
y ≥ 0 with Ay < 0; obviously y is not the zero vector, in this case. Since
AT = −A, it follows that yTA > 0. Consequently, there is a nonzero x ≥ 0,
such that xTA ≥ 0; it is x = y. This is a contradiction. So p̂ exists.

Since the game is symmetric, we have

p̂TAp̂ = (p̂TAp̂)T = p̂TAT p̂ = −p̂TAp̂,
so that p̂TAp̂ = 0.

For any probability vectors p and q we have

pTAp̂ = p̂TAT p = −p̂TAp ≤ 0,

and
0 ≤ p̂TAq.

We conclude that the mixed strategies p̂ and q̂ = p̂ are optimal.

118 A First Course in Optimization

7.5.1 An Example of a Symmetric Game

We present now a simple example of a symmetric game and compute
the optimal randomized strategies.

Consider the payoff matrix

A =

[
0 1
−1 0

]
.

This matrix is skew-symmetric, so the game is symmetric. Let p̂T = [1, 0];
then p̂TA = [0, 1] ≥ 0. We show that p̂ and q̂ = p̂ are the optimal random-
ized strategies. For any probability vectors pT = [p1, p2] and qT = [q1, q2],
we have

pTAp̂ = −p2 ≤ 0,

p̂TAp̂ = 0,

and
p̂TAq = q2 ≥ 0.

It follows that the pair of strategies p̂ = q̂ = [1, 0]T are optimal randomized
strategies.

7.5.2 Comments on the Proof of the Min-Max Theorem

In [115], Gale proves the existence of optimal randomized solutions for
an arbitrary matrix game by showing that there is associated with such a
game a symmetric matrix game and that an optimal randomized solution
exists for one if and only if such exists for the other. Another way is by
converting the existing game into a “positive” game.

7.6 Positive Games

As Gale notes in [115], it is striking that two fundamental mathemati-
cal tools in linear economic theory, linear programming and game theory,
developed simultaneously, and independently, in the years following the
Second World War. More remarkable still was the realization that these
two areas are closely related. Gale’s proof of the Min-Max Theorem, which
relates the game to a linear programming problem and employs his Strong
Duality Theorem, provides a good illustration of this close connection.

If the I by J payoff matrix A has only positive entries, we can use Gale’s
Strong Duality Theorem 6.3 for linear programming to prove the Min-Max
Theorem.

Matrix Games and Optimization 119

Let b and c be the vectors whose entries are all one. Consider the LP
problem of minimizing z = cTx, over all x ≥ 0 with ATx ≥ b; this is the PC
problem. The DC problem is then to maximize w = bT y, over all y ≥ 0 with
Ay ≤ c. Since A has only positive entries, both PC and DC are feasible,
so, by Gale’s Strong Duality Theorem 6.3, we know that there are feasible
nonnegative vectors x̂ and ŷ and nonnegative µ such that

ẑ = cT x̂ = µ = bT ŷ = ŵ.

Since x̂ cannot be zero, µ must be positive.

7.6.1 Some Exercises

Ex. 7.2 Show that the vectors p̂ = 1
µ x̂ and q̂ = 1

µ ŷ are probability vectors
and are optimal randomized strategies for the matrix game.

Ex. 7.3 Given an arbitrary I by J matrix A, there is α > 0 so that the
matrix B with entries Bij = Aij + α has only positive entries. Show that
any optimal randomized probability vectors for the game with payoff matrix
B are also optimal for the game with payoff matrix A.

It follows from these exercises that there exist optimal randomized so-
lutions for any matrix game.

7.6.2 Comments

This proof of the Min-Max Theorem shows that we can associate with
a given matrix game a linear programming problem. It follows that we can
use the simplex method to find optimal randomized solutions for matrix
games. It also suggests that a given linear programming problem can be
associated with a matrix game; see Gale [115] for more discussion of this
point.

7.7 Example: The “Bluffing” Game

In [115] Gale discusses several games, one of which he calls the “bluffing”
game. For this game, there is a box containing two cards, marked HI and
LO, respectively. Both players begin by placing their “ante” a > 0, on the
table. Player One, P1, draws one of the two cards and looks at it; Player
Two, P2, does not see it. Then P1 can either “fold,” losing his ante a > 0
to P2, or “bet” b > a. Then P2 can either fold, losing her ante also to P1,

120 A First Course in Optimization

or “call,” and bet b also. If P2 calls, she wins if LO is on the card drawn,
and P1 wins if it is HI.

Since it makes no sense for P1 to fold when HI, his two strategies are

• s1: bet in both cases; and

• s2: bet if HI and fold if LO.

Strategy s1 is “bluffing” on the part of P1, since he bets even when he
knows the card shows LO.

Player Two has the two strategies

• t1: call; and

• t2: fold.

When (s1,t1) is played, P1 wins the bet half the time, so his expected
gain is zero.

When (s1,t2) is played, P1 wins the ante a from P2.
When (s2,t1) is played, P1 bets half the time, winning each time, so

gaining b, but loses his ante a half the time. His expected gain is then
(b− a)/2.

When (s2,t2) is played, P1 wins the ante from P2 half the time, and
they exchange antes half the time. Therefore, P1 expects to win a/2.

The payoff matrix for P1 is then

A =

[
0 a
b−a
2

a
2

]
.

Note that if b ≤ 2a, then the game has a saddle point, (s2,t1), and the
saddle value is b−a

2 . If b > 2a, then the players need randomized strategies.
Suppose P1 plays s1 with probability p and s2 with probability 1 − p,

while P2 plays t1 with probability q and t2 with probability 1 − q. Then
the expected gain for P1 is

p(1− q)a+ (1− p)
(
q
b− a

2
+ (1− q)a

2

)
,

which can be written as

(1 + p)
a

2
+ q
(

(1− p) b
2
− a
)
,

and as
a

2
+ q
(b

2
− a
)

+ p
(a

2
− q b

2

)
.

If (
(1− p) b

2
− a
)

= 0,

Matrix Games and Optimization 121

or p = 1− 2a
b , then P1 expects to win

a− a2

b
=

2a

b

b− a
2

,

regardless of what q is. Similarly, if(a
2
− q b

2

)
= 0,

or q = a
b , then P2 expects to pay out a− a2

b , regardless of what p is. These
are the optimal randomized strategies.

If b ≤ 2a, then P1 should never bluff, and should always play s2. Then
P2 will always play t1 and P1 wins b−a

2 , on average. But when b is higher
than 2a, P2 would always play t2, if P1 always plays s2, in which case the
payoff would be only a

2 , which is lower than the expected payoff when P1
plays optimally. It pays P1 to bluff, because it forces P2 to play t1 some of
the time.

7.8 Learning the Game

In our earlier discussion we saw that the matrix game involving the
payoff matrix

A =

[
4 1
2 3

]
is not deterministic. The best thing the players can do is to select their play
at random, with the first player playing i = 1 with probability p and i = 2
with probability 1 − p, and the second player playing column j = 1 with
probability q and j = 2 with probability 1− q. If the first player, call him
P1, selects p = 1

4 , then he expects to get 5
2 , regardless of what the second

player, call her P2, does; otherwise his fortunes depend on what P2 does.
His optimal mixed-strategy (column) vector is [1/4, 3/4]T . Similarly, the
second player notices that the only way she can be certain to pay out no
more than 5

2 is to select q = 1
2 . The minimum of these maximum payouts

occurs when she chooses q = 1
2 , and the min-max payout is 5

2 .
Because the payoff matrix is two-by-two, we are able to determine easily

the optimal mixed-strategy vectors for each player. When the payoff matrix
is larger, finding the optimal mixed-strategy vectors is not a simple matter.
As we have seen, one approach is to obtain these vectors by solving a related
linear-programming problem. In this section we consider other approaches
to finding the optimal mixed-strategy vectors.

122 A First Course in Optimization

7.8.1 An Iterative Approach

In [115] Gale presents an iterative approach to learning how best to
play a matrix game. The assumptions are that the game is to be played
repeatedly and that the two players adjust their play as they go along,
based on the earlier plays of their opponent.

Suppose, for the moment, that P1 knows that P2 is playing the ran-
domized strategy q, where, as earlier, we denote by p and q probability
column vectors. The entry (Aq)i of the column vector Aq is the expected
payoff to P1 if he plays strategy i. It makes sense for P1 then to find the
index i for which this expected payoff is largest and to play that strategy
every time. Of course, if P2 notices what P1 is doing, she will abandon q
to her advantage.

After the game has been played n times, the players can examine the
previous plays and make estimates of what the opponent is doing. Suppose
that P1 has played strategy i ni times, where ni ≥ 0 and n1 + n2 + ... +
nI = n. Denote by pn the probability column vector whose ith entry is
ni/n. Similarly, calculate qn. These two probability vectors summarize the
tendencies of the two players over the first n plays. It seems reasonable
that an attempt to learn the game would involve these probability vectors.

For example, P1 could see which entry of qn is the largest, assume that
P2 is most likely to play that strategy the next time, and play his best
strategy against that play of P2. However, if there are several strategies for
P2 to choose, it is still unlikely that P2 will choose this strategy the next
time. Perhaps P1 could do better by considering his long-run fortunes and
examining the vector Aqn of expected payoffs. In the exercise below, you
are asked to investigate this matter.

7.8.2 An Exercise

As we have seen, the optimal randomized strategies can be found by
solving a linear programming problem. The following exercise suggests a
different way to discover these strategies.

Ex. 7.4 Suppose that both players are attempting to learn how best to play
the game by examining the vectors pn and qn after n plays. Devise an
algorithm for the players to follow that will lead to optimal mixed strategies
for both. Simulate repeated play of a particular matrix game to see how
your algorithm performs. If the algorithm does its job, but does it slowly,
that is, it takes many plays of the game for it to begin to work, investigate
how it might be speeded up.

Matrix Games and Optimization 123

7.9 Non-Constant-Sum Games

In this final section we consider non-constant-sum games. These are
more complicated and the mathematical results more difficult to obtain
than in the constant-sum games. Such non-constant-sum games can be used
to model situations in which the players may both gain by cooperation, or,
when speaking of economic actors, by collusion [99]. We begin with the most
famous example of a non-constant-sum game, the Prisoners’ Dilemma.

7.9.1 The Prisoners’ Dilemma

Imagine that you and your partner are arrested for robbing a bank and
both of you are guilty. The two of you are held in separate rooms and given
the following options by the district attorney: (1) if you confess, but your
partner does not, you go free, while he gets three years in jail; (2) if he
confesses, but you do not, he goes free and you get the three years; (3) if
both of you confess, you each get two years; (4) if neither of you confesses,
each of you gets one year in jail. Let us call you player number one, and
your partner player number two. Let strategy one be to remain silent, and
strategy two be to confess.

Your payoff matrix is

A =

[
−1 −3
0 −2

]
,

so that, for example, if you remain silent, while your partner confesses, your
payoff is A1,2 = −3, where the negative sign is used because jail time is
undesirable. From your perspective, the game has a deterministic solution;
you should confess, assuring yourself of no more than two years in jail.
Your partner views the situation the same way and also should confess.
However, when the game is viewed, not from one individual’s perspective,
but from the perspective of the pair of you, we see that by sticking together
you each get one year in jail, instead of each of you getting two years; if
you cooperate, you both do better.

7.9.2 Two Payoff Matrices Needed

In the case of non-constant-sum games, one payoff matrix is not enough
to capture the full picture. Consider the following example of a non-
constant-sum game. Let the matrix

A =

[
5 4
3 6

]

124 A First Course in Optimization

be the payoff matrix for Player One (P1), and

B =

[
5 6
7 2

]
be the payoff matrix for Player Two (P2); that is, A1,2 = 4 and B2,1 = 7
means that if P1 plays the first strategy and P2 plays the second strategy,
then P1 gains four and P2 gains seven. Notice that the total payoff for each
play of the game is not constant, so we require two matrices, not one.

Player One, considering only the payoff matrix A, discovers that the
best strategy is a randomized strategy, with the first strategy played three
quarters of the time. Then P1 has expected gain of 9

2 . Similarly, Player
Two, applying the same analysis to his payoff matrix, B, discovers that
he should also play a randomized strategy, playing the first strategy five
sixths of the time; he then has an expected gain of 16

3 . However, if P1

switches and plays the first strategy all the time, while P2 continues with
his randomized strategy, P1 expects to gain 29

6 > 27
6 , while the expected

gain of P2 is unchanged. This is very different from what happens in the case
of a constant-sum game; there, the sum of the expected gains is constant,
and equals zero for a zero-sum game, so P1 would not be able to increase
his expected gain, if P2 plays his optimal randomized strategy.

7.9.3 An Example: Illegal Drugs in Sports

In a recent article in Scientific American [188], Michael Shermer uses
the model of a non-constant-sum game to analyze the problem of doping,
or illegal drug use, in sports, and to suggest a solution. He is a former
competitive cyclist and his specific example comes from the Tour de France.
He is the first player, and his opponent the second player. The choices are to
cheat by taking illegal drugs or to stay within the rules. The assumption he
makes is that a cyclist who sticks to the rules will become less competitive
and will be dropped from his team.

Currently, the likelihood of getting caught is low, and the penalty for
cheating is not too high, so, as he shows, the rational choice is for everyone
to cheat, as well as for every cheater to lie. He proposes changing the payoff
matrices by increasing the likelihood of being caught, as well as the penalty
for cheating, so as to make sticking to the rules the rational choice.

Chapter 8

Differentiation

8.1 Chapter Summary . 125
8.2 Directional Derivative . 125

8.2.1 Definitions . 125
8.3 Partial Derivatives . 127
8.4 Some Examples . 127

8.4.1 Example 1 . 127
8.4.2 Example 2 . 127

8.5 Gâteaux Derivative . 128
8.6 Fréchet Derivative . 129

8.6.1 The Definition . 129
8.6.2 Properties of the Fréchet Derivative . 129

8.7 The Chain Rule . 129
8.8 Exercises . 130

8.1 Chapter Summary

The definition of the derivative of a function g : D ⊆ R→ R is a familiar
one. In this chapter we examine various ways in which this definition can be
extended to functions f : D ⊆ RJ → R of several variables. Here D is the
domain of the function f and we assume that int(D), the interior of the set
D, is not empty. While the concepts of directional derivatives and gradients
are familiar enough, they are not the whole story of differentiation. In this
chapter we consider the Gâteaux derivative and the Fréchet derivative,
along with several examples. This chapter can be skipped without harm to
the reader.

8.2 Directional Derivative

We begin with one- and two-sided directional derivatives.

125

126 A First Course in Optimization

8.2.1 Definitions

The function g(x) = |x| does not have a derivative at x = 0, but it has
one-sided directional derivatives there. The one-sided directional derivative
of g(x) at x = 0, in the direction of x = 1, is

g′+(0; 1) = lim
t↓0

1

t
[g(0 + t)− g(0)] = 1,

and in the direction of x = −1, it is

g′+(0;−1) = lim
t↓0

1

t
[g(0− t)− g(0)] = 1.

However, the two-sided derivative of g(x) = |x| does not exist at x = 0.
We can extend the concept of one-sided directional derivatives to func-

tions of several variables.

Definition 8.1 Let f : D ⊆ RJ → R be a real-valued function of several
variables, let a be in int(D), and let d be a unit vector in RJ . The one-sided
directional derivative of f(x), at x = a, in the direction of d, is

f ′+(a; d) = lim
t↓0

1

t
[f(a+ td)− f(a)].

Definition 8.2 The two-sided directional derivative of f(x) at x = a, in
the direction of d, is

f ′(a; d) = lim
t→0

1

t
(f(a+ td)− f(a)).

If the two-sided directional derivative exists then we have

f ′(a; d) = f ′+(a; d) = −f ′+(a;−d).

Given x = a and d, we define the function φ(t) = f(a+ td), for t such that
a+ td is in D. The derivative of φ(t) at t = 0 is then

φ′(0) = lim
t→0

1

t
[φ(t)− φ(0)] = f ′(a; d).

In the definition of f ′(a; d) we restricted d to unit vectors because the
directional derivative f ′(a; d) is intended to measure the rate of change of
f(x) as x moves away from x = a in the direction d. Later, in our discussion
of convex functions, it will be convenient to view f ′(a; d) as a function of
d and to extend this function to the more general function of arbitrary z
defined by

f ′(a; z) = lim
t→0

1

t
(f(a+ tz)− f(a)).

It is easy to see that

f ′(a; z) = ‖z‖2f ′(a; z/‖z‖2).

Differentiation 127

8.3 Partial Derivatives

For j = 1, ..., J , denote by ej the vector whose entries are all zero,
except for a one in the jth position.

Definition 8.3 If f ′(a; ej) exists, then it is ∂f
∂xj

(a), the partial derivative

of f(x), at x = a, with respect to xj, the jth entry of the variable vector x.

Definition 8.4 If the partial derivative, at x = a, with respect to xj, exists
for each j, then the gradient of f(x), at x = a, is the vector ∇f(a) whose
entries are ∂f

∂xj
(a).

8.4 Some Examples

We consider some examples of directional derivatives.

8.4.1 Example 1

For (x, y) 6= (0, 0), let

f(x, y) =
2xy

x2 + y2
,

and define f(0, 0) = 1. Let d = (cos θ, sin θ). Then it is easy to show that,
for a = (0, 0),

φ(t) = f(a+ td) = sin 2θ,

for t 6= 0, and φ(0) = 1. If θ is such that sin 2θ = 1, then φ(t) is constant,
and φ′(0) = 0. But, if sin 2θ 6= 1, then φ(t) is discontinuous at t = 0, so φ(t)
is not differentiable at t = 0. Therefore, f(x, y) has a two-sided directional
derivative at (x, y) = (0, 0) only in certain directions.

8.4.2 Example 2

[114] For (x, y) 6= (0, 0), let

f(x, y) =
2xy2

x2 + y4
,

128 A First Course in Optimization

and f(0, 0) = 0. Again, let d = (cos θ, sin θ). Then we have

φ′(0) =
2 sin2 θ

cos θ
,

for cos θ 6= 0. If cos θ = 0, then f(x, y) is the constant zero in that direction,
so φ′(0) = 0. Therefore, the function f(x, y) has a two-sided directional
derivative at (x, y) = (0, 0), for every vector d. Note that the two partial
derivatives are both zero at (x, y) = (0, 0), so ∇f(0, 0) = 0. Note also that,
since f(y2, y) = 1 for all y 6= 0, the function f(x, y) is not continuous at
(0, 0).

8.5 Gâteaux Derivative

Just having a two-sided directional derivative for every d is not suffi-
cient, in most cases; we need something stronger.

Definition 8.5 If f(x) has a two-sided directional derivative at x = a, for
every vector d, and, in addition,

f ′(a; d) = 〈∇f(a), d〉,

for each d, then f(x) is Gâteaux-differentiable at x = a, and ∇f(a) is the
Gâteaux derivative of f(x) at x = a, also denoted f ′(a).

Example 2 above showed that it is possible for f(x) to have a two-sided
directional derivative at x = a, for every d, and yet fail to be Gâteaux-
differentiable.

From Cauchy’s Inequality, we know that

|f ′(a; d)| = |〈∇f(a), d〉| ≤ ||∇f(a)||2 ||d||2,

and that f ′(a; d) attains its most positive value when the direction d is
a positive multiple of ∇f(a). This is the motivation for steepest descent
optimization.

For ordinary functions g : D ⊆ R → R, we know that differentiability
implies continuity. It is possible for f(x) to be Gâteaux-differentiable at
x = a and yet not be continuous at x = a; see Ortega and Rheinboldt
[174]. This means that the notion of Gâteaux-differentiability is too weak.
In order to have a nice theory of multivariate differentiation, the notion of
derivative must be strengthened. The stronger notion we seek is Fréchet
differentiability.

Differentiation 129

8.6 Fréchet Derivative

The notion of Fréchet-differentiability is the one appropriate for our
purposes.

8.6.1 The Definition

Definition 8.6 We say that f(x) is Fréchet-differentiable at x = a and
∇f(a) is its Fréchet derivative if

lim
||h||→0

1

||h||
|f(a+ h)− f(a)− 〈∇f(a), h〉| = 0.

Notice that the limit in the definition of the Fréchet derivative involves the
norm of the incremental vector h, which is where the power of the Fréchet
derivative arises. Also, since the norm and the associated inner product can
be changed, so can the Fréchet derivative; see Exercise 8.1 for an example.
The corresponding limit in the definition of the Gâteaux derivative involves
only the scalar t, and therefore requires no norm and makes sense in any
vector space.

8.6.2 Properties of the Fréchet Derivative

It can be shown that if f(x) is Fréchet-differentiable at x = a, then f(x)
is continuous at x = a. If f(x) is Gâteaux-differentiable at each point in an
open set containing x = a, and ∇f(x) is continuous at x = a, then ∇f(a) is
also the Fréchet derivative of f(x) at x = a. Since the continuity of ∇f(x)
is equivalent to the continuity of each of the partial derivatives, we learn
that f(x) is Fréchet-differentiable at x = a if it is Gâteaux-differentiable
in a neighborhood of x = a and the partial derivatives are continuous at
x = a. If ∇f(x) is continuous in a neighborhood of x = a, the function f(x)
is said to be continuously differentiable. Unless we write otherwise, when we
say that a function is differentiable, we shall mean Gâteaux-differentiable,
since this is usually sufficient for our purposes and the two types of differ-
entiability typically coincide anyway.

8.7 The Chain Rule

For fixed a and d in RJ , the function φ(t) = f(a + td), defined for the
real variable t, is a composition of the function f : RJ → R itself and the

130 A First Course in Optimization

function g : R → RJ defined by g(t) = a + td; that is, φ(t) = f(g(t)).
Writing

f(a+ td) = f(a1 + td1, a2 + td2, ..., aJ + tdJ),

and applying the Chain Rule, we find that

f ′(a; d) = φ′(0) =
∂f

∂x1
(a)d1 + ...+

∂f

∂xJ
(a)dJ ;

that is,
f ′(a; d) = φ′(0) = 〈∇f(a), d〉.

But we know that f ′(a; d) is not always equal to 〈∇f(a), d〉. This means
that the Chain Rule is not universally true and must involve conditions on
the function f . Clearly, unless the function f is Gâteaux-differentiable, the
chain rule cannot hold. For an in-depth treatment of this matter, consult
Ortega and Rheinboldt [174].

8.8 Exercises

Ex. 8.1 Let Q be a real, positive-definite symmetric matrix. Define the
Q-inner product on RJ to be

〈x, y〉Q = xTQy = 〈x,Qy〉,
and the Q-norm to be

||x||Q =
√
〈x, x〉Q.

Show that, if ∇f(a) is the Fréchet derivative of f(x) at x = a, for the usual
Euclidean norm, then Q−1∇f(a) is the Fréchet derivative of f(x) at x = a,
for the Q-norm. Hint: Use the inequality

√
λJ ||h||2 ≤ ||h||Q ≤

√
λ1||h||2,

where λ1 and λJ denote the greatest and smallest eigenvalues of Q, respec-
tively.

Ex. 8.2 [23, Ex. 10, p. 134] For (x, y) not equal to (0, 0), let

f(x, y) =
xayb

xp + yq
,

with f(0, 0) = 0. In each of the five cases below, determine if the function
is continuous, Gâteaux-, Fréchet-, or continuously differentiable at (0, 0).

Differentiation 131

(a) a = 2, b = 3, p = 2, and q = 4;

(b) a = 1, b = 3, p = 2, and q = 4;

(c) a = 2, b = 4, p = 4, and q = 8;

(d) a = 1, b = 2, p = 2, and q = 2;

(e) a = 1, b = 2, p = 2, and q = 4.

This page intentionally left blankThis page intentionally left blank

Chapter 9

Convex Functions

9.1 Chapter Summary . 133
9.2 Functions of a Single Real Variable . 134

9.2.1 Fundamental Theorems . 134
9.2.2 Proof of Rolle’s Theorem . 135
9.2.3 Proof of the Mean Value Theorem . 135
9.2.4 A Proof of the MVT for Integrals . 135
9.2.5 Two Proofs of the EMVT . 135
9.2.6 Lipschitz Continuity . 136
9.2.7 The Convex Case . 137

9.3 Functions of Several Real Variables . 140
9.3.1 Continuity . 140
9.3.2 Differentiability . 141
9.3.3 Second Differentiability . 143
9.3.4 Finding Maxima and Minima . 144
9.3.5 Solving F (x) = 0 through Optimization 144
9.3.6 When Is F (x) a Gradient? . 144
9.3.7 Lower Semi-Continuity . 146
9.3.8 The Convex Case . 146

9.4 Sub-Differentials and Sub-Gradients . 149
9.5 Sub-Gradients and Directional Derivatives . 151

9.5.1 Some Definitions . 151
9.5.2 Sub-Linearity . 152
9.5.3 Sub-Differentials and Directional Derivatives 154
9.5.4 An Example . 156

9.6 Functions and Operators . 157
9.7 Convex Sets and Convex Functions . 159
9.8 Exercises . 160

9.1 Chapter Summary

In this chapter we investigate further the properties of convex functions
of one and several variables, in preparation for our discussion of convex
programming and iterative optimization algorithms.

133

134 A First Course in Optimization

9.2 Functions of a Single Real Variable

We begin by recalling some of the basic results concerning functions of
a single real variable.

9.2.1 Fundamental Theorems

• The Intermediate Value Theorem (IVT):

Theorem 9.1 Let f(x) be continuous on the interval [a, b]. If d is
between f(a) and f(b), then there is c between a and b with f(c) = d.

• Rolle’s Theorem:

Theorem 9.2 Let f(x) be continuous on the closed interval [a, b]
and differentiable on (a, b), with f(a) = f(b). Then, there is c in
(a, b) with f ′(c) = 0.

• The Mean Value Theorem (MVT):

Theorem 9.3 Let f(x) be continuous on the closed interval [a, b] and
differentiable on (a, b). Then, there is c in (a, b) with

f(b)− f(a) = f ′(c)(b− a).

• A MVT for Integrals:

Theorem 9.4 Let g(x) be continuous and h(x) integrable with con-
stant sign on the interval [a, b]. Then there is c in (a, b) such that∫ b

a

g(x)h(x)dx = g(c)

∫ b

a

h(x)dx.

• The Extended Mean Value Theorem (EMVT):

Theorem 9.5 Let f(x) be twice differentiable on the interval (u, v)
and let a and b be in (u, v). Then there is c between a and b with

f(b) = f(a) + f ′(a)(b− a) +
1

2
f ′′(c)(b− a)2.

If f(x) is a function with f ′′(x) > 0 for all x and f ′(a) = 0, then, from
the EMVT, we know that f(b) > f(a), unless b = a, so that x = a is a
global minimizer of the function f(x). As we shall see, such functions are
strictly convex.

Convex Functions 135

9.2.2 Proof of Rolle’s Theorem

The IVT is a direct consequence of the completeness of R. To prove
Rolle’s Theorem, we simply note that either f is constant, in which case
f ′(x) = 0 for all x in (a, b), or it has a local maximum or minimum at c in
(a, b), in which case f ′(c) = 0.

9.2.3 Proof of the Mean Value Theorem

The main use of Rolle’s Theorem is to prove the Mean Value Theorem.
Let

g(x) = f(x)−
(f(b)− f(a)

b− a

)
(x− a).

Then g(a) = g(b) and so there is c ∈ (a, b) with g′(c) = 0, or

f(b)− f(a) = f ′(c)(b− a).

9.2.4 A Proof of the MVT for Integrals

We now prove the Mean Value Theorem for Integrals. Since g(x) is
continuous on the interval [a, b], it takes on its minimum value, say m, and
its maximum value, say M , and, by the Intermediate Value Theorem, g(x)
also takes on any value in the interval [m,M]. Assume, without loss of

generality, that h(x) ≥ 0, for all x in the interval [a, b], so that
∫ b
a
h(x)dx ≥

0. Then we have

m

∫ b

a

h(x)dx ≤
∫ b

a

g(x)h(x)dx ≤M
∫ b

a

h(x)dx,

which says that the ratio ∫ b
a
g(x)h(x)dx∫ b
a
h(x)dx

lies in the interval [m,M]. Consequently, there is a value c in (a, b) for
which g(c) has the value of this ratio. This completes the proof.

9.2.5 Two Proofs of the EMVT

Now we present two proofs of the EMVT. We begin by using integration
by parts, with u(x) = f ′(x) and v(x) = x− b, to get

f(b)− f(a) =

∫ b

a

f ′(x)dx = f ′(x)(x− b)|ba −
∫ b

a

f ′′(x)(x− b)dx,

136 A First Course in Optimization

or

f(b)− f(a) = −f ′(a)(a− b)−
∫ b

a

f ′′(x)(x− b)dx.

Then, using the MVT for integrals, with g(x) = f ′′(x) assumed to be
continuous, and h(x) = x− b, we have

f(b) = f(a) + f ′(a)(b− a)− f ′′(c)
∫ b

a

(x− b)dx,

from which the assertion of the theorem follows immediately.
A second proof of the EMVT, which does not require that f ′′(x) be

continuous, is as follows. Let a and b be fixed and set

F (x) = f(x) + f ′(x)(b− x) +A(b− x)2,

for some constant A to be determined. Then F (b) = f(b). Select A so that
F (a) = f(b). Then F (b) = F (a), so there is c in (a, b) with F ′(c) = 0, by
the MVT, or, more simply, from Rolle’s Theorem. Therefore,

0 = F ′(c) = f ′(c)+f ′′(c)(b−c)+f ′(c)(−1)−2A(b−c) = (f ′′(c)−2A)(b−c).

So A = 1
2f
′′(c) and

F (x) = f(x) + f ′(x)(b− x) +
1

2
f ′′(c)(b− x)2,

from which we get

F (a) = f(b) = f(a) + f ′(a)(b− a) +
1

2
f ′′(c)(b− a)2.

This completes the second proof.

9.2.6 Lipschitz Continuity

Let f : R → R be a differentiable function. From the Mean-Value
Theorem we know that

f(b) = f(a) + f ′(c)(b− a),

for some c between a and b. If there is a constant L with |f ′(x)| ≤ L for
all x, that is, the derivative is bounded, then we have

|f(b)− f(a)| ≤ L|b− a|, (9.1)

for all a and b; functions that satisfy Equation (9.1) are said to be L-
Lipschitz continuous.

Convex Functions 137

9.2.7 The Convex Case

We focus now on the special case of convex functions. Earlier, we said
that a proper function g : R → (−∞,∞] is convex if its epigraph is a
convex set, in which case the effective domain of the function g must be
a convex set, since it is the orthogonal projection of the convex epigraph.
For a real-valued function g defined on the whole real line we have several
conditions on g that are equivalent to being a convex function.

Proposition 9.1 Let g : R→ R. The following are equivalent:

(1) the epigraph of g(x) is convex;

(2) for all points a < x < b in R

g(x) ≤ g(b)− g(a)

b− a
(x− a) + g(a);

(3) for all points a < x < b in R

g(x) ≤ g(b)− g(a)

b− a
(x− b) + g(b);

(4) for all points a and b in R and for all α in the interval (0, 1)

g((1− α)a+ αb) ≤ (1− α)g(a) + αg(b).

The proof of Proposition 9.1 is left as an exercise.
As a result of Proposition 9.1, we can use the following definition of a

convex real-valued function.

Definition 9.1 A function g : R→ R is called convex if, for each pair of
distinct real numbers a and b, the line segment connecting the two points
A = (a, g(a)) and B = (b, g(b)) is on or above the graph of g(x); that is,
for every α in (0, 1),

g((1− α)a+ αb) ≤ (1− α)g(a) + αg(b).

If the inequality is always strict, then g(x) is strictly convex.

The function g(x) = x2 is a simple example of a convex function. If
g(x) is convex, then g(x) is continuous, as well [176, p. 47]. It follows
from Proposition 9.1 that, if g(x) is convex, then, for every triple of points
a < x < b, we have

g(x)− g(a)

x− a
≤ g(b)− g(a)

b− a
≤ g(b)− g(x)

b− x
.

138 A First Course in Optimization

Therefore, for fixed a, the ratio

g(x)− g(a)

x− a

is an increasing function of x, and, for fixed b, the ratio

g(b)− g(x)

b− x

is an increasing function of x.
If we allow g to take on the value +∞, then we say that g is convex if

and only if, for all points a and b in R and for all α in the interval (0, 1),

g((1− α)a+ αb) ≤ (1− α)g(a) + αg(b).

If g(x) is a differentiable function, then convexity can be expressed
in terms of properties of the derivative, g′(x); for every triple of points
a < x < b, we have

g′(a) ≤ g(b)− g(a)

b− a
≤ g′(b).

If g(x) is differentiable and convex, then g′(x) is an increasing function.
In fact, the converse is also true, as we shall see shortly.

Recall that the line tangent to the graph of g(x) at the point x = a has
the equation

y = g′(a)(x− a) + g(a).

Theorem 9.6 For the differentiable function g(x), the following are equiv-
alent:

(1) g(x) is convex;

(2) for all a and x we have

g(x) ≥ g(a) + g′(a)(x− a); (9.2)

(3) the derivative, g′(x), is an increasing function, or, equivalently,

(g′(x)− g′(a))(x− a) ≥ 0,

for all a and x.

Proof: Assume that g(x) is convex. If x > a, then

g′(a) ≤ g(x)− g(a)

x− a
,

Convex Functions 139

while, if x < a, then
g(a)− g(x)

a− x
≤ g′(a).

In either case, the inequality in (9.2) holds. Now, assume that the inequality
in (9.2) holds. Then

g(x) ≥ g′(a)(x− a) + g(a),

and
g(a) ≥ g′(x)(a− x) + g(x).

Adding the two inequalities, we obtain

g(a) + g(x) ≥ (g′(x)− g′(a))(a− x) + g(a) + g(x),

from which we conclude that

(g′(x)− g′(a))(x− a) ≥ 0. (9.3)

So g′(x) is increasing. Finally, we assume the derivative is increasing and
show that g(x) is convex. If g(x) is not convex, then there are points a < b
such that, for all x in (a, b),

g(x)− g(a)

x− a
>
g(b)− g(a)

b− a
.

By the Mean Value Theorem there is c in (a, b) with

g′(c) =
g(b)− g(a)

b− a
.

Select x in the interval (a, c). Then there is d in (a, x) with

g′(d) =
g(x)− g(a)

x− a
.

Then g′(d) > g′(c), which contradicts the assumption that g′(x) is increas-
ing. This concludes the proof.

If g(x) is twice differentiable, we can say more. If we multiply both sides
of the inequality in (9.3) by (x− a)−2, we find that

g′(x)− g′(a)

x− a
≥ 0, (9.4)

for all x and a. This inequality suggests the following theorem.

Theorem 9.7 If g(x) is twice differentiable, then g(x) is convex if and
only if g′′(x) ≥ 0, for all x.

140 A First Course in Optimization

Proof: According to the Mean Value Theorem, as applied to the function
g′(x), for any points a < b there is c in (a, b) with g′(b)−g′(a) = g′′(c)(b−a).
If g′′(x) ≥ 0, the right side of this equation is nonnegative, so the left side
is also. Now assume that g(x) is convex, which implies that g′(x) is an
increasing function. Since g′(x+h)− g′(x) ≥ 0 for all h > 0, it follows that
g′′(x) ≥ 0.

The following result, as well as its extension to higher dimensions, will
be helpful in our study of iterative optimization.

Theorem 9.8 Let h(x) be convex and differentiable and its derivative,
h′(x), nonexpansive, that is,

|h′(b)− h′(a)| ≤ |b− a|,

for all a and b. Then h′(x) is firmly nonexpansive, which means that

(h′(b)− h′(a))(b− a) ≥ (h′(b)− h′(a))2.

Proof: Assume that h′(b)− h′(a) 6= 0, since the alternative case is trivial.
If h′(x) is nonexpansive, then the inequality in (9.4) tells us that

0 ≤ h′(b)− h′(a)

b− a
≤ 1,

so that
b− a

h′(b)− h′(a)
≥ 1.

Now multiply both sides by (h′(b)− h′(a))2.

In the next section we extend these results to functions of several vari-
ables.

9.3 Functions of Several Real Variables

In this section we consider the continuity and differentiability of a func-
tion of several variables. For more details, see the chapter on differentiabil-
ity.

9.3.1 Continuity

In addition to real-valued functions f : RJ → R, we shall also be in-
terested in vector-valued functions F : RJ → RI , such as F (x) = ∇f(x),
whose range is in RJ , not in R.

Convex Functions 141

Definition 9.2 We say that F : RJ → RI is continuous at x = a if

lim
x→a

f(x) = f(a);

that is, ‖f(x)− f(a)‖2 → 0, as ‖x− a‖2 → 0.

Definition 9.3 We say that F : RJ → RI is L-Lipschitz, or an L-
Lipschitz continuous function, with respect to the 2-norm, if there is L > 0
such that

‖F (b)− F (a)‖2 ≤ L‖b− a‖2,

for all a and b in RJ .

9.3.2 Differentiability

Let F : D ⊆ RJ → RI be a RI -valued function of J real variables,
defined on domain D with nonempty interior int(D).

Definition 9.4 The function F (x) is said to be Fréchet-differentiable, or
just differentiable, at point x0 in int(D) if there is an I by J matrix F ′(x0)
such that

lim
h→0

1

||h||2
[F (x0 + h)− F (x0)− F ′(x0)h] = 0.

It can be shown that, if F is differentiable at x = x0, then F is continuous
there as well [114].

If f : RJ → R is differentiable, then f ′(x0) = ∇f(x0), the gradient
of f at x0. The function f(x) is differentiable if each of its first partial
derivatives is continuous. If f is finite and convex and differentiable on an
open convex set C, then ∇f is continuous on C [182, Corollary 25.5.1].

If the derivative f ′ : RJ → RJ is, itself, differentiable, then f ′′ : RJ →
RJ×J , and f ′′(x) = H(x) = ∇2f(x), the Hessian matrix whose entries
are the second partial derivatives of f . The function f(x) will be twice
differentiable if each of the second partial derivatives is continuous. In that
case, the mixed second partial derivatives are independent of the order of
the variables, the Hessian matrix is symmetric, and the chain rule applies.

Let f : RJ → R be a differentiable function. The Mean-Value Theorem
for f is the following.

Theorem 9.9 (The Mean Value Theorem) For any two points a and
b in RJ , there is α in (0, 1) such that

f(b) = f(a) + 〈∇f((1− α)a+ αb), b− a〉. (9.5)

142 A First Course in Optimization

Proof: To prove this, we parameterize the line segment between the points
a and b as x(t) = a+ t(b−a). Then we define g(t) = f(x(t)). We can apply
the ordinary mean value theorem to g(t), to get

g(1) = g(0) + g′(α),

for some α in the interval [0, 1]. The derivative of g(t) is

g′(t) = 〈∇f(x(t)), b− a〉,

where

∇f(x(t)) =
(∂f
∂x1

(x(t)), ...,
∂f

∂xJ
(x(t))

)T
.

Therefore,
g′(α) = 〈∇f(x(α), b− a〉 .

Since x(α) = (1− α)a+ αb, the proof is complete.

If there is a constant L with ||∇f(x)||2 ≤ L for all x, that is, the gradient
is bounded in norm, then we have

|f(b)− f(a)| ≤ L||b− a||2,

for all a and b; such functions are then L-Lipschitz continuous. We can study
multivariate functions f : RJ → R by using them to construct functions of
a single real variable, given by

φ(t) = f(x0 + t(x− x0)),

where x and x0 are fixed (column) vectors in RJ . If f(x) is differentiable,
then

φ′(t) = 〈∇f(x0 + t(x− x0)), x− x0〉.

If f(x) is twice continuously differentiable, then

φ′′(t) = (x− x0)T∇2f(x0 + t(x− x0))(x− x0).

Definition 9.5 A function f : RJ → R is called coercive if

lim
‖x‖2→+∞

f(x) = +∞.

Definition 9.6 A function f : RJ → R is called super-coercive if

lim
‖x‖2→+∞

f(x)

‖x‖2
= +∞.

We have the following proposition, whose proof is left as Exercise 9.3.

Convex Functions 143

Proposition 9.2 Let f : RJ → R be a super-coercive differentiable func-
tion. Then the gradient operator ∇f : RJ → RJ is onto RJ ; that is, for
every y ∈ RJ there is x ∈ RJ with ∇f(x) = y.

For example, the function f : R→ R given by f(x) = 1
2x

2 satisfies the
conditions of the proposition and its derivative is f ′(x) = x, whose range
is all of R. In contrast, the function g(x) = 1

3x
3 is not coercive and its

derivative, g′(x) = x2, does not have all of R for its range.

9.3.3 Second Differentiability

We assume, throughout this subsection, that f : RJ → R has continuous
second partial derivatives. Then H(x) = ∇2f(x), the Hessian matrix of f
at the point x, has for its entries the second partial derivatives of f at x,
and is symmetric. The following theorems are fundamental in describing
local maxima and minima of f .

Theorem 9.10 Let x and x∗ be points in RJ . Then there is a point z on
the line segment [x∗, x] connecting x with x∗ such that

f(x) = f(x∗) +∇f(x∗) · (x− x∗) +
1

2
(x− x∗) ·H(z)(x− x∗). (9.6)

Consider the problem of optimizing the function f(x). The first step is
to find the critical points. Assume that f is twice differentiable and that
x∗ is a critical point, so that ∇f(x∗) = 0. Then, from Equation (9.6) we
have

f(x) = f(x∗) +
1

2
(x− x∗) ·H(z)(x− x∗),

so that

f(x)− f(x∗) =
1

2
(x− x∗) ·H(z)(x− x∗).

The behavior of the function f around x∗ depends on the quadratic form
(x− x∗) ·H(z)(x− x∗). We have the following theorem.

Theorem 9.11 Let x∗ be a critical point, that is, ∇f(x∗) = 0. Then

(1) x∗ is a global minimizer of f(x) if (x− x∗) ·H(z)(x− x∗) ≥ 0 for all
x and for all z in [x∗, x];

(2) x∗ is a strict global minimizer of f(x) if (x− x∗) ·H(z)(x− x∗) > 0
for all x 6= x∗ and for all z in [x∗, x];

(3) x∗ is a global maximizer of f(x) if (x− x∗) ·H(z)(x− x∗) ≤ 0 for all
x and for all z in [x∗, x];

(4) x∗ is a strict global maximizer of f(x) if (x− x∗) ·H(z)(x− x∗) < 0
for all x 6= x∗ and for all z in [x∗, x].

144 A First Course in Optimization

9.3.4 Finding Maxima and Minima

Assume that g : RJ → R is differentiable and attains its minimum value.
We want to minimize the function g(x). Solving ∇g(x) = 0 to find the
optimal x = x∗ may not be easy, so we may turn to an iterative algorithm
for finding roots of ∇g(x), or one that minimizes g(x) directly. In the latter
case, we may again consider a steepest descent algorithm of the form

xk+1 = xk − γ∇g(xk),

for some γ > 0. We denote by T the operator

Tx = x− γ∇g(x).

Then, using ∇g(x∗) = 0, we find that

||x∗ − xk+1||2 = ||Tx∗ − Txk||2.

We would like to know if there are choices for γ that imply convergence of
the iterative sequence. As in the case of functions of a single variable, for
functions g(x) that are convex, the answer is yes.

9.3.5 Solving F (x) = 0 through Optimization

Consider a function f(x) : RJ → R that is strictly convex and has a
unique global minimum at x̂. If F (x) = ∇f(x) for all x, then F (x̂) = 0. In
some cases it may be simpler to minimize the function f(x) than to solve
for a zero of F (x).

If F (x) is not a gradient of any function f(x), we may still be able to find
a zero of F (x) by minimizing some function. For example, let g(x) = ‖x‖2.
Then the function f(x) = g(F (x)) is minimized when F (x) = 0.

The function F (x) = Ax − b need not have a zero. In such cases, we
can minimize the function f(x) = 1

2‖Ax − b‖
2
2 to obtain the least-squares

solution, which then can be viewed as an approximate zero of F (x).

9.3.6 When Is F (x) a Gradient?

The following theorem is classical and extends the familiar “test for
exactness” ; see Ortega and Rheinboldt [174].

Theorem 9.12 Let F : D ⊆ RJ → RJ be continuously differentiable on an
open convex set D0 ⊆ D. Then there is a differentiable function f : D0 → R
such that F (x) = ∇f(x) for all x in D0 if and only if the derivative F ′(x)
is symmetric, where F ′(x) is the J by J Jacobian matrix with entries

(F ′(x))mn =
∂Fm(x)

∂xn
,

Convex Functions 145

and
F (x) = (F1(x), F2(x), ..., FJ(x)).

Proof: If F (x) = ∇f(x) for all x in D0 and is continuously differentiable,
then the second partial derivatives of f(x) are continuous, so that the
mixed second partial derivatives of f(x) are independent of the order of
differentiation. In other words, the matrix F ′(x) is symmetric, where now
F ′(x) is the Hessian matrix of f(x).

For notational convenience, we present the proof of the converse only
for the case of J = 3; the proof is the same in general. The proof in [174]
is somewhat different.

Without loss of generality, we assume that the origin is a member of
the set D0. Define f(x, y, z) by

f(x, y, z) =

∫ x

0

F1(u, 0, 0)du+

∫ y

0

F2(x, u, 0)du+

∫ z

0

F3(x, y, u)du.

We prove that ∂f
∂x (x, y, z) = F1(x, y, z).

The partial derivative of the first integral, with respect to x, is
F1(x, 0, 0). The partial derivative of the second integral, with respect to
x, obtained by differentiating under the integral sign, is∫ y

0

∂F2

∂x
(x, u, 0)du,

which, by the symmetry of the Jacobian matrix, is∫ y

0

∂F1

∂y
(x, u, 0)du = F1(x, y, 0)− F1(x, 0, 0).

The partial derivative of the third integral, with respect to x, obtained by
differentiating under the integral sign, is∫ z

0

∂F3

∂x
(x, y, u)du,

which, by the symmetry of the Jacobian matrix, is∫ z

0

∂F1

∂z
(x, y, u)du = F1(x, y, z)− F1(x, y, 0).

We complete the proof by adding these three integral values. Similar cal-
culations show that ∇f(x) = F (x).

146 A First Course in Optimization

9.3.7 Lower Semi-Continuity

We begin with a definition.

Definition 9.7 A proper function f from RJ to (−∞,∞] is lower semi-
continuous if f(x) = lim inf f(y), as y → x.

The following theorem shows the importance of lower semi-continuity.

Theorem 9.13 [182, Theorem 7.1] Let f be an arbitrary proper func-
tion from RJ to (−∞,∞]. Then the following conditions are equivalent:

(1) f is lower semi-continuous throughout RJ ;

(2) for every real α, the set {x|f(x) ≤ α} is closed;

(3) the epigraph of f(x) is closed.

As an example, consider the function f(x) defined for −1 ≤ x < 0
by f(x) = −x − 1, and for 0 < x ≤ 1 by f(x) = −x + 1. If we define
f(0) = −1, then f(x) becomes lower semi-continuous at x = 0 and the
epigraph becomes closed. If we define f(0) = 1, the function is upper semi-
continuous at x = 0, but is no longer lower semi-continuous there; its
epigraph is no longer closed.

It is helpful to recall the following theorem:

Theorem 9.14 Let f : RJ → R be LSC and let C ⊆ RJ be nonempty,
closed, and bounded. Then there is a in C with f(a) ≤ f(x), for all x in C.

9.3.8 The Convex Case

We begin with some definitions.

Definition 9.8 The proper function g(x) : RJ → (−∞,∞] is said to be
convex if, for each pair of distinct vectors a and b and for every α in the
interval (0, 1) we have

g((1− α)a+ αb) ≤ (1− α)g(a) + αg(b).

If the inequality is always strict, then g(x) is called strictly convex.

The function g(x) is convex if and only if, for every x and z in RJ and
real t, the function f(t) = g(x + tz) is a convex function of t. Therefore,
the theorems for the multi-variable case can also be obtained from previous
results for the single-variable case.

Convex Functions 147

Definition 9.9 A proper convex function g is closed if it is lower semi-
continuous.

A proper convex function g is closed if and only if its epigraph is a closed
set.

Definition 9.10 The closure of a proper convex function g is the function
clg defined by

clg(x) = lim inf
y→x

g(y).

The function clg is convex and lower semi-continuous and agrees with g,
except perhaps at points of the relative boundary of dom(g). The epigraph
of clg is the closure of the epigraph of g.

If g is convex and finite on an open subset of dom(g), then g is contin-
uous there, as well [182]. In particular, we have the following theorem.

Theorem 9.15 Let g : RJ → R be convex and finite-valued on RJ . Then
g is continuous.

Let ιC(x) be the indicator function of the closed convex set C, that is,
ιC(x) = 0 if x ∈ C, and ιC(x) = +∞, otherwise. This function is lower
semi-continuous, convex, but not continuous at points on the boundary of
C. If we had defined ιC(x) to be, say, 1, for x not in C, then the function
would have been lower semi-continuous, and finite everywhere, but would
no longer be convex.

As in the case of functions of a single real variable, we have several
equivalent notions of convexity for differentiable functions of more than
one variable.

Theorem 9.16 Let g : RJ → R be differentiable. The following are equiv-
alent:

(1) g(x) is convex;

(2) for all x and y we have

g(x) ≥ g(y) + 〈∇g(y), x− y〉 ;

(3) for all x and y we have

〈∇g(x)−∇g(y), x− y〉 ≥ 0.

Proof: First, we show that (1) implies (2). According to the Mean Value
Theorem, Equation (9.5), we have

g(x) = g(y) + 〈∇g(αx+ (1− α)y), x− y〉,

148 A First Course in Optimization

for some α in the interval (0, 1). From the definition of the gradient, we
know that

lim
α↓0

1

α
(g(y + α(x− y))− g(y)− 〈∇g(y), α(x− y)〉) = 0.

Using (1), we have

g(x)−g(y)−〈∇g(y), x−y〉 ≥ 1

α
(g(y+α(x−y))−g(y)−〈∇g(y), α(x−y)〉),

for all α. Then we take limits on both sides of this inequality, as α ↓ 0.
Next we show that (2) implies (1). We have

g(x)− g((1− α)x+ αy) ≥ α〈∇g((1− α)x+ αy), x− y〉,

and

g(y)− g((1− α)x+ αy) ≥ −(1− α)〈∇g((1− α)x+ αy), x− y〉.

Therefore,

(1−α)g(x)− (1−α)g((1−α)x+αy) ≥ (1−α)α〈∇g((1−α)x+αy), x−y〉,

and

αg(y)− αg((1− α)x+ αy) ≥ −α(1− α)〈∇g((1− α)x+ αy), x− y〉.

Now add the last two inequalities.
Showing that (2) implies (3) is easy, so we conclude the proof by showing

that (3) implies (2). Once again, the Mean Value Theorem tells us that

g(x) = g(y) + 〈∇g(αx+ (1− α)y), x− y〉,

for some α in the interval (0, 1). Using (3) we have

〈∇g(αx+ (1− α)y)−∇g(y), αx+ (1− α)y − y〉 ≥ 0,

for all α. Therefore,

〈∇g(αx+ (1− α)y)−∇g(y), x− y〉 ≥ 0,

for all α. This completes the proof.

Corollary 9.1 The function g(x) = 1
2

(
‖x‖22 − ‖x− PCx‖22

)
is convex.

Proof: We show later in Corollary 12.1 that the gradient of g(x) is∇g(x) =
PCx. From the inequality (4.4) we know that

〈PCx− PCy, x− y〉 ≥ 0,

for all x and y. Therefore, g(x) is convex, by Theorem 9.16.

Convex Functions 149

Definition 9.11 Let g : RJ → R be convex and differentiable. Then the
Bregman distance, from x to y, associated with g is

Dg(x, y) = g(x)− g(y)− 〈∇g(y), x− y〉.

Since g is convex, Theorem 9.16 tells us that Dg(x, y) ≥ 0, for all x and
y. Also, for each fixed y, the function d(x) = Dg(x, y) is g(x) plus a linear
function of x; therefore, d(x) is also convex.

If we impose additional restrictions on g, then we can endow Dg(x, y)
with additional properties usually associated with a distance measure; for
example, if g is strictly convex, then Dg(x, y) = 0 if and only if x = y.

As in the case of functions of a single variable, we can say more when the
function g(x) is twice differentiable. To guarantee that the second derivative
matrix is symmetric, we assume that the second partial derivatives are
continuous. Note that, by the chain rule again, f ′′(t) = zT∇2g(x+ tz)z.

Theorem 9.17 Let each of the second partial derivatives of g(x) be contin-
uous, so that g(x) is twice continuously differentiable. Then g(x) is convex
if and only if the second derivative matrix ∇2g(x) is nonnegative definite,
for each x.

9.4 Sub-Differentials and Sub-Gradients

The following proposition describes the relationship between hyper-
planes supporting the epigraph of a differentiable function and its gradient.
The proof is left as Exercise 9.5.

Proposition 9.3 Let g : RJ → R be a convex function that is differen-
tiable at the point x0. Then there is a unique hyperplane H supporting the
epigraph of g at the point (x0, g(x0)) and H can be written as

H = {z ∈ RJ+1|〈a, z〉 = γ},

for
aT = (∇g(x0)T ,−1)

and
γ = 〈∇g(x0), x0〉 − g(x0).

Now we want to extend Proposition 9.3 to the case of nondifferentiable
functions. Suppose that g : RJ → (−∞,+∞] is convex and g(x) is finite
for x in the nonempty convex set C. If x0 is in the interior of C, then g is
continuous at x0. Applying the Support Theorem to the epigraph of clg,
we obtain the following theorem.

150 A First Course in Optimization

Theorem 9.18 If x0 is an interior point of the set C, then there is a
nonzero vector u with

g(x) ≥ g(x0) + 〈u, x− x0〉, (9.7)

for all x.

Proof: The point (x0, g(x0)) is a boundary point of the epigraph of g.
According to the Support Theorem, there is a nonzero vector a = (b, c) in
RJ+1, with b in RJ and c real, such that

〈b, x〉+ cr = 〈a, (x, r)〉 ≤ 〈a, (x0, g(x0))〉 = 〈b, x0〉+ cg(x0),

for all (x, r) in the epigraph of g, that is, all (x, r) with g(x) ≤ r. The real
number c cannot be positive, since 〈b, x〉 + cr is bounded above, while r
can be increased arbitrarily. Also c cannot be zero; if c = 0, then b cannot
be zero and we would have 〈b, x〉 ≤ 〈b, x0〉 for all x in C. But, since x0 is
in the interior of C, there is t > 0 such that x = x0 + tb is in C. So c < 0.
We then select u = − 1

c b. The inequality in (9.7) follows.

Note that it can happen that b = 0; therefore u = 0 is possible; see
Exercise 9.12.

Definition 9.12 A vector u is said to be a sub-gradient of the function
g(x) at x = x0 if, for all x, we have

g(x) ≥ g(x0) + 〈u, x− x0〉.

The collection of all sub-gradients of g at x = x0 is called the sub-
differential of g at x = x0, denoted ∂g(x0). The domain of ∂g is the set
dom ∂g = {x|∂g(x) 6= ∅}.

As an example, consider the function f(x) = x2. The epigraph of f(x)
is the set of all points in the x, y-plane on or above the graph of f(x). At
the point (1, 1) on the boundary of the epigraph the supporting hyperplane
is just the tangent line, which can be written as y = 2x− 1 or 2x− y = 1.
The outward normal vector is a = (b, c) = (2,−1). Then u = b = 2 = f ′(1).

As we have seen, if f : RJ → R is differentiable, then an outward normal
vector to the hyperplane supporting the epigraph at the boundary point
(x0, f(x0)) is the vector

a = (bT , cT)T = (∇f(x0)T ,−1)T .

So b = u = ∇f(x0).
When f(x) is not differentiable at x = x0 there will be multiple hyper-

planes supporting the epigraph of f(x) at the boundary point (x0, f(x0));
the normals can be chosen to be a = (bT ,−1)T , so that b = u is a sub-
gradient of f(x) at x = x0. For example, consider the function of real x

Convex Functions 151

given by g(x) = |x|, and x0 = 0. For any α with |α| ≤ 1, the graph of the
straight line y = αx is a hyperplane supporting the epigraph of g(x) at
x = 0. Writing αx − y = 0, we see that the vector a = (b, c) = (α,−1) is
normal to the hyperplane. The constant b = u = α is a sub-gradient and
for all x we have

g(x) = |x| ≥ g(x0) + 〈u, x− x0〉 = αx.

Let g : R→ R. Then m is in the sub-differential ∂g(x0) if and only if the
line y = mx+ b passes through the point (x0, g(x0)) and mx+ b ≤ g(x) for
all x. As the reader is asked to show in Exercise 9.4, when g is differentiable
at x = x0 the only value of m that works is m = g′(x0), and the only line
that works is the line tangent to the graph of g at x = x0.

Theorem 9.18 says that the sub-differential of a convex function at an
interior point of its domain is nonempty. If the sub-differential consists of
a single vector, then g is differentiable at x = x0 and that single vector is
its gradient at x = x0.

Note that, by the chain rule, f ′(t) = ∇g(x + tz) · z, for the function
f(t) = g(x+ tz).

Whenever ∇g(x) exists, it is the only sub-gradient for g at x. The
following lemma, whose proof is left as Exercise 9.8, provides a further
connection between the partial derivatives of g and the entries of any sub-
gradient vector u.

Lemma 9.1 Let g : RJ → R be a convex function, and u any sub-gradient
of g at the point x. If ∂g

∂xj
(x) exists, then it is equal to uj.

Proof: In Exercise 9.8 the reader is asked to provide a proof.

9.5 Sub-Gradients and Directional Derivatives

In this section we investigate the relationship between the sub-gradients
of a convex function and its directional derivatives. Our discussion follows
that of [23].

9.5.1 Some Definitions

Definition 9.13 Let S be any subset of RJ . A point x in S is said to be
in the core of S, denoted core(S), if, for every vector z in RJ , there is an
ε > 0, which may depend on z, such that, if |t| ≤ ε, then x+ tz and x− tz
are in S.

152 A First Course in Optimization

The core of a set is a more general notion than the interior of a set; for
x to be in the interior of S we must be able to find an ε > 0 that works
for all z. For example, let S ⊆ R2 be the set of all points on or above the
graph of y = x2, below or on the graph of y = −x2 and the x-axis. The
origin is then in the core of S, but is not in the interior of S. In Exercise
9.9 you will be asked to show that the core of S and the interior of S are
the same, whenever S is convex.

Definition 9.14 A function f : RJ → (−∞,+∞] is sub-linear if, for all
x and y in RJ and all nonnegative a and b,

f(ax+ by) ≤ af(x) + bf(y).

We say that f is sub-additive if

f(x+ y) ≤ f(x) + f(y),

and positive homogeneous if, for all positive λ,

f(λx) = λf(x).

9.5.2 Sub-Linearity

We have the following proposition, the proof of which is left as Exercise
9.6.

Proposition 9.4 A function f : RJ → (−∞,+∞] is sub-linear if and only
if it is both sub-additive and positive homogenous.

Definition 9.15 The lineality space of a sub-linear function f , denoted
lin(f), is the largest subspace of RJ on which f is a linear functional.

For example, take S to be a subspace of RJ and a a fixed member of
RJ . Define f(x) by

f(x) = 〈a, PSx〉 + ‖PS⊥x‖2.

Then lin(f) is the subspace S.

Proposition 9.5 Let p : RJ → (−∞,+∞] be sub-linear and S = lin(p).
Then p(s+ x) = p(s) + p(x) for any s in S and any x in RJ .

Proof: We know that

p(s+ x) ≤ p(s) + p(x)

Convex Functions 153

by the sub-additivity of p, so we need only show that

p(s+ x) ≥ p(s) + p(x).

Write

p(x) = p(x+ s− s) ≤ p(s+ x) + p(−s) = p(s+ x)− p(s),

so that
p(x) + p(s) ≤ p(s+ x).

In this chapter, for notational convenience, we denote the one-sided
directional derivative of f at x, in the direction of z, as

f ′(x; z) = lim
t↓0

1

t
(f(x+ tz)− f(x)).

Proposition 9.6 If f : RJ → (−∞,+∞] is convex and x is in the core
of dom(f), then f ′(x; z), the directional derivative of f , at x and in the
direction z, exists and is finite for all z and is a sub-linear function of z.

Proof: For any z and real t 6= 0 let

g(z, t) =
1

t
(f(x+ tz)− f(x)).

For 0 < t ≤ s write

f(x+ tz) = f
((

1− t

s

)
x+

t

s
(x+ sz)

)
≤
(

1− t

s

)
f(x) +

t

s
f(x+ sz).

It follows that
g(z, t) ≤ g(z, s).

A similar argument gives

g(z,−s) ≤ g(z,−t) ≤ g(z, t) ≤ g(z, s).

Since x lies in the core of dom(f), we can select s > 0 small enough so
that both g(z,−s) and g(z, s) are finite. Therefore, as t ↓ 0, the g(z, t) are
decreasing to the finite limit f ′(x; z); we have

−∞ < g(z,−s) ≤ f ′(x; z) ≤ g(z, t) ≤ g(z, s) < +∞.

The sub-additivity of f ′(x; z) as a function of z follows easily from the
inequality

g(z + y, t) ≤ g(z, 2t) + g(y, 2t).

154 A First Course in Optimization

Proving the positive homogeneity of f ′(x; z) is easy. Therefore, f ′(x; z) is
sub-linear in z.

As pointed out by Borwein and Lewis in [23], the directional derivative
of f is a local notion, defined only in terms of what happens to f near x,
while the notion of a sub-gradient is clearly a global one. If f is differentiable
at x, then we know that the derivative of f at x, which is then ∇f(x), can
be used to express the directional derivatives of f at x:

f ′(x; z) = 〈∇f(x), z〉.

We want to extend this relationship to sub-gradients of nondifferentiable
functions.

9.5.3 Sub-Differentials and Directional Derivatives

We have the following proposition, whose proof is left as Exercise 9.7.

Proposition 9.7 Let f : RJ → (−∞,+∞] be convex and x in dom(f).
Then u is a sub-gradient of f at x if and only if

〈u, z〉 ≤ f ′(x; z)

for all z.

The main result of this subsection is the following theorem.

Theorem 9.19 Let f : RJ → (−∞,+∞] be convex and x in the core of
dom(f). Let z be given. Then there is a u in ∂f(x), with u depending on
z, such that

f ′(x; z) = 〈u, z〉. (9.8)

Therefore f ′(x; z) is the maximum of the quantities 〈u, z〉, as u ranges over
the sub-differential ∂f(x). In particular, the sub-differential is not empty.

Notice that Theorem 9.19 asserts that once z is selected, there will be
a sub-gradient u for which Equation (9.8) holds. It does not assert that
there will be one sub-gradient that works for all z; this happens only when
there is only one sub-gradient, namely ∇f(x). The theorem also tells us
that the function f ′(x; ·) is the support function of the closed convex set
C = ∂f(x).

We need the following proposition.

Proposition 9.8 Let p : RJ → (−∞,+∞] be sub-linear, and therefore
convex, and let x lie in the core of dom(f). Define the function

q(z) = p′(x; z).

Then q(z) is sub-linear and has the following properties:

Convex Functions 155

(1) q(λx) = λp(x), for all λ;

(2) q(z) ≤ p(z), for all z;

(3) lin(q) contains the set lin(p) + span{x}.

Proof: If t > 0 is close enough to zero, then the quantity 1 + tγ is positive
and

p(x+ tγx) = p((1 + tγ)x) = (1 + tγ)p(x),

by the positive homogeneity of p. Therefore,

q(γx) = lim
t↓0

1

t

(
p(x+ tγx)− p(x)

)
= γp(x).

Since
p(x+ tz) ≤ p(x) + tp(z),

we have
p(x+ tz)− p(x) ≤ tp(z),

from which q(z) ≤ p(z) follows immediately. Finally, let lin(p) = S. Then,
by Proposition 9.5, we have

p(x+ t(s+ γx)) = p(ts) + p((1 + tγ)x) = tp(s) + (1 + tγ)p(x),

for t > 0 close enough to zero. Therefore, we have

q(s+ γx) = p(s) + γp(x).

From this it is easy to show that q is linear on S+ span{x}.
Now we prove Theorem 9.19.

Proof of Theorem 9.19 Let y be fixed. Let {a1, a2, ..., aJ} be a basis for
RJ , with a1 = y. Let p0(z) = f ′(x; z) and p1(z) = p′0(a1; z). Note that,
since the function of z defined by p0(z) = f ′(x; z) is convex and finite for
all values of z, p′0(z;w) exists and is finite, for all z and all w. Therefore,
p1(z) = p′0(a1; z) is sub-linear, and so convex, and finite for all z. The
function p1(z) is linear on the span of the vector a1. Because

p′0(x; z) ≤ p0(x+ z)− p0(x)

and p0 is sub-additive, we have

p′0(x; z) = p1(z) ≤ p0(z).

Continuing in this way, we define, for k = 1, 2, ..., J , pk(z) = p′k−1(ak; z).

Then each pk(z) is sub-linear, and linear on the span of {a1, ..., ak}, and

pk(z) ≤ pk−1(z).

156 A First Course in Optimization

Therefore, pJ(z) is linear on all of RJ . Finally, we have

pJ(y) ≤ p0(y) = p0(a1) = −p′0(a1;−a1)

= −p1(−a1) = −p1(−y) ≤ −pJ(−y) = pJ(y),

with the last equality the result of the linearity of pJ . Therefore,

pJ(y) = f ′(x; y).

Since pJ(z) is a linear function, there is a vector u such that

pJ(z) = 〈u, z〉.

Since
pJ(z) = 〈u, z〉 ≤ f ′(x; z) = p0(z)

for all z, we know that u ∈ ∂f(x).

Theorem 9.19 shows that the sub-linear function f ′(x; ·) is the support
functional for the set ∂f(x). In fact, every lower semi-continuous sub-linear
function is the support functional of some closed convex set, and every
support functional of a closed convex set is a lower semi-continuous sub-
linear function [129].

9.5.4 An Example

The function f : R2 → R given by f(x1, x2) = 1
2x

2
1 + |x2| has gradient

∇f(x1, x2) = (x1, 1)T if x2 > 0, and ∇f(x1, x2) = (x1,−1)T if x2 < 0, but
is not differentiable when x2 = 0. When x2 = 0, the directional derivative
function is

f ′((x1, 0); (z1, z2)) = x1z1 + |z2|,

and the sub-differential is

∂f((x1, 0)) = {φ = (x1, γ)T | − 1 ≤ γ ≤ 1}.

Therefore,
f ′((x1, 0); (z1, z2)) = 〈φ, z〉,

with γ = 1 when z2 ≥ 0, and γ = −1 when z2 < 0. In either case, we have

f ′((x1, 0); (z1, z2)) = max
φ∈∂f(x1,0)

〈φ, z〉.

The directional derivative function f ′(x; z) is linear for all z when x2 is not
zero, and when x2 = 0, f ′(x; z) is linear for z in the subspace S of all z
with z2 = 0.

Convex Functions 157

9.6 Functions and Operators

A function F : RJ → RJ is also called an operator on RJ . For our
purposes, the most important examples of operators on RJ are the or-
thogonal projections PC onto convex sets, and gradient operators, that is,
F (x) = ∇g(x), for some differentiable function g(x) : RJ → R. As we shall
see later, the operators PC are also gradient operators.

Definition 9.16 An operator F (x) on RJ is called L-Lipschitz continuous,
with respect to a given norm on RJ , if, for every x and y in RJ , we have

‖F (x)− F (y)‖ ≤ L‖x− y‖.

Definition 9.17 An operator F (x) on RJ is called nonexpansive, with
respect to a given norm on RJ , if, for every x and y in RJ , we have

‖F (x)− F (y)‖ ≤ ‖x− y‖.

Clearly, if an operator F (x) is L-Lipschitz continuous, then the operator
G(x) = 1

LF (x) is nonexpansive.

Definition 9.18 An operator F (x) on RJ is called firmly nonexpansive,
with respect to the Euclidean norm on RJ , if, for every x and y in RJ , we
have

〈F (x)− F (y), x− y〉 ≥ ‖F (x)− F (y)‖22.

Lemma 9.2 A firmly nonexpansive operator on RJ is nonexpansive.

We have the following analog of Theorem 9.8.

Theorem 9.20 Let h(x) be convex and differentiable and its derivative,
∇h(x), nonexpansive in the two-norm, that is,

||∇h(b)−∇h(a)||2 ≤ ||b− a||2,

for all a and b. Then ∇h(x) is firmly nonexpansive, which means that

〈∇h(b)−∇h(a), b− a〉 ≥ ||∇h(b)−∇h(a)||22.

Suppose that g(x) : RJ → R is convex and the function F (x) = ∇g(x)
is L-Lipschitz. Let h(x) = 1

Lg(x), so that ∇h(x) is a nonexpansive opera-
tor. According to Theorem 9.20, the operator ∇h(x) = 1

L∇g(x) is firmly
nonexpansive.

Unlike the proof of Theorem 9.8, the proof of Theorem 9.20 is not trivial.
In [119] Golshtein and Tretyakov prove the following theorem, from which
Theorem 9.20 follows immediately. The proof given here of Theorem 9.21
is different from that given in [119].

158 A First Course in Optimization

Theorem 9.21 Let g : RJ → R be convex and differentiable. The following
are equivalent:

||∇g(x)−∇g(y)||2 ≤ ||x− y||2; (9.9)

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
1

2
||∇g(x)−∇g(y)||22; (9.10)

and
〈∇g(x)−∇g(y), x− y〉 ≥ ||∇g(x)−∇g(y)||22.

Proof: The only non-trivial step in the proof is showing that Inequality
(9.9) implies Inequality (9.10). From Theorem 9.16 we see that Inequality
(9.9) implies that the function h(x) = 1

2‖x‖
2
2 − g(x) is convex, and that

1

2
‖x− y‖22 ≥ g(x)− g(y)− 〈∇g(y), x− y〉 ,

for all x and y. Now fix y and define

d(z) = Dg(z, y) = g(z)− g(y)− 〈∇g(y), z − y〉,

for all z. Since the function g(z) is convex, so is d(z). Since

∇d(z) = ∇g(z)−∇g(y),

it follows from Inequality (9.9) that

‖∇d(z)−∇d(x)‖2 ≤ ‖z − x‖2,

for all x and z. Then, from our previous calculations, we may conclude that

1

2
‖z − x‖22 ≥ d(z)− d(x)− 〈∇d(x), z − x〉 ,

for all z and x.
Now let x be arbitrary and

z = x−∇g(x) +∇g(y).

Then

0 ≤ d(z) ≤ d(x)− 1

2
‖∇g(x)−∇g(y)‖22.

This completes the proof.

We know from Corollary 9.1 that the function

g(x) =
1

2

(
‖x‖22 − ‖x− PCx‖22

)

Convex Functions 159

is convex. As Corollary 12.1 tells us, its gradient is ∇g(x) = PCx. We
showed in Corollary 4.1 that the operator PC is nonexpansive by showing
that it is actually firmly nonexpansive. Therefore, Theorem 9.20 can be
viewed as a generalization of Corollary 4.1.

If g(x) is convex and f(x) = ∇g(x) is L-Lipschitz, then 1
L∇g(x) is

nonexpansive, so, by Theorem 9.20, it is firmly nonexpansive. It follows
that, for γ > 0, the operator

Tx = x− γ∇g(x)

is averaged, whenever 0 < γ < 2
L . By Theorem 14.2, the iterative sequence

xk+1 = Txk = xk − γ∇g(xk) converges to a minimizer of g(x), whenever
minimizers exist.

9.7 Convex Sets and Convex Functions

In Chapter 4 we said that a function f : RJ → (−∞,∞] is convex if
and only if its epigraph is a convex set in RJ+1. At the same time, every
closed convex set C ⊆ RJ has the form

C = {x|f(x) ≤ 0}, (9.11)

for some convex function f : RJ → R. We are tempted to assume that the
smoothness of the function f will be reflected in the geometry of the set C.
In particular, we may well expect that, if x is on the boundary of C and f
is differentiable at x, then there is a unique hyperplane supporting C at x
and its normal is ∇f(x); but this is wrong. Any closed convex nonempty
set C can be written as in Equation (9.11), for the differentiable function

f(x) =
1

2
‖x− PCx‖2.

As we shall see later, the gradient of f(x) is ∇f(x) = x − PCx, so that
∇f(x) = 0 for every x in C. Nevertheless, the set C may have a unique
supporting hyperplane at each boundary point, or it may have multiple
such hyperplanes, regardless of the properties of the f used to define C.

When we first encounter gradients, usually in Calculus III, they are
almost always described geometrically as a vector that is a normal for the
hyperplane that is tangent to the level surface of f at that point, and as
indicating the direction of greatest increase of f . However, this is not always
the case.

Consider the function f : R2 → R given by

f(x1, x2) =
1

2

(√
x21 + x22 − 1

)2
,

160 A First Course in Optimization

for x21 + x22 ≥ 1, and zero, otherwise. This function is differentiable and

∇f(x) =
‖x‖2 − 1

‖x‖2
x,

for ‖x‖2 ≥ 1, and ∇f(x) = 0, otherwise. The level surface in R2 of all x
such that f(x) ≤ 0 is the closed unit ball; it is not a simple closed curve. At
every point of its boundary the gradient is zero, and yet at each boundary
point there is a unique supporting tangent line.

Consider the function f : R2 → R given by f(x) = f(x1, x2) = x21. The
level curve C = {x|f(x) = 0} is the x2 axis. For any x such that x1 = 0
the hyperplane supporting C at x is C itself, and any vector of the form
(γ, 0) is a normal to C. But the gradient of f(x) is zero at all points of C.
So the gradient of f is not a normal vector to the supporting hyperplane.

9.8 Exercises

Ex. 9.1 Say that a function f : R→ R has the intermediate value property
(IVP) if, for every a and b in R and, for any d between f(a) and f(b), there
is c between a and b with f(c) = d. Let g : R → R be differentiable and
f(x) = g′(x). Show that f has the IVP, even if f is not continuous.

Ex. 9.2 Prove Proposition 9.1.

Ex. 9.3 Prove Proposition 9.2. Hint: Fix z ∈ RJ and show that the func-
tion g(x) = f(x)− 〈z, x〉 has a global minimizer.

Ex. 9.4 Let g : R → R be differentiable at x = x0. Show that, if the line
y = mx+ b passes through the point (x0, g(x0)) and mx+ b ≤ g(x) for all
x, then m = g′(x0).

Ex. 9.5 Prove Proposition 9.3.

Ex. 9.6 Prove Proposition 9.4.

Ex. 9.7 Prove Proposition 9.7.

Ex. 9.8 Prove Lemma 9.1.

Ex. 9.9 Let C be a nonempty convex subset of RJ . Show that the core of
C and the interior of C are the same. Hints: We need only consider the
case in which the core of C is not empty. By shifting C if necessary, we

Convex Functions 161

may assume that 0 is in the core of C. Then we want to show that 0 is in
the interior of C. The gauge function for C is

γC(x) = inf{λ ≥ 0 |x ∈ λC}.

Show that the interior of C is the set of all x for which γC(x) < 1.

Ex. 9.10 Let p : RJ → R be sub-linear, and p(−xn) = −p(xn) for n =
1, 2, ..., N . Show that p is linear on the span of {x1, ..., xN}.

Ex. 9.11 Prove Lemma 9.2.

Ex. 9.12 Show that, if x̂ minimizes the function g(x) over all x in RJ ,
then u = 0 is in the sub-differential ∂g(x̂).

Ex. 9.13 If f(x) and g(x) are convex functions on RJ , is f(x) + g(x)
convex? Is f(x)g(x) convex?

Ex. 9.14 Let ιC(x) be the indicator function of the closed convex set C.
Show that the sub-differential of the function ιC at a point c in C is the
normal cone to C at the point c, that is, ∂ιC(c) = NC(c), for all c in C.

Ex. 9.15 [201] Let g(t) be a strictly convex function for t > 0. For x > 0
and y > 0, define the function

f(x, y) = xg
(y
x

)
.

Use induction to prove that

J∑
n=1

f(xn, yn) ≥ f(x+, y+),

for any positive numbers xn and yn, where x+ =
∑J
n=1 xn. Also show

that equality obtains if and only if the finite sequences {xn} and {yn} are
proportional.

Ex. 9.16 Use the result in Exercise 9.15 to obtain Cauchy’s Inequality.
Hint: Let g(t) = −

√
t.

Ex. 9.17 Use the result in Exercise 9.15 to obtain Hölder’s Inequality.
Hint: Let g(t) = −t1/q.

Ex. 9.18 Use the result in Exercise 9.15 to obtain Minkowski’s Inequality.
Hint: Let g(t) = −(t1/p + 1)p.

162 A First Course in Optimization

Ex. 9.19 Use the result in Exercise 9.15 to obtain Milne’s Inequality:

x+y+ ≥

(
J∑
n=1

(xn + yn)

)(
J∑
n=1

xnyn
xn + yn

)
.

Hint: Let g(t) = − t
1+t .

Ex. 9.20 For real numbers x > 0 and y > 0, let f(x, y) be the Kullback–
Leibler function,

f(x, y) = KL(x, y) = x
(

log
x

y

)
+ y − x.

Use Exercise 9.15 to show that

J∑
n=1

KL(xn, yn) ≥ KL(x+, y+).

Ex. 9.21 Let x > 0 and y > 0 be vectors in RJ with entries xn and yn,
respectively, and let

KL(x, y) =

J∑
n=1

KL(xn, yn)

be the Kullback–Leibler distance from y to x. Let y+ =
∑J
n=1 yn > 0.

Show that
KL(x, y) = KL(x+, y+) +KL

(
x,
x+
y+

y
)
.

Chapter 10

Convex Programming

10.1 Chapter Summary . 164
10.2 The Primal Problem . 164

10.2.1 The Perturbed Problem . 164
10.2.2 The Sensitivity Vector and the Lagrangian 165

10.3 From Constrained to Unconstrained . 166
10.4 Saddle Points . 167

10.4.1 The Primal and Dual Problems . 167
10.4.2 The Main Theorem . 168
10.4.3 A Duality Approach to Optimization 168

10.5 The Karush–Kuhn–Tucker Theorem . 169
10.5.1 Sufficient Conditions . 169
10.5.2 The KKT Theorem: Saddle-Point Form 169
10.5.3 The KKT Theorem: The Gradient Form 170

10.6 On Existence of Lagrange Multipliers . 171
10.7 The Problem of Equality Constraints . 172

10.7.1 The Problem . 172
10.7.2 The KKT Theorem for Mixed Constraints 172
10.7.3 The KKT Theorem for LP . 173
10.7.4 The Lagrangian Fallacy . 174

10.8 Two Examples . 174
10.8.1 A Linear Programming Problem . 174
10.8.2 A Nonlinear Convex Programming Problem 175

10.9 The Dual Problem . 177
10.9.1 When Is MP = MD? . 177
10.9.2 The Primal-Dual Method . 178
10.9.3 Using the KKT Theorem . 178

10.10 Nonnegative Least-Squares Solutions . 178
10.11 An Example in Image Reconstruction . 179
10.12 Solving the Dual Problem . 180

10.12.1 The Primal and Dual Problems . 181
10.12.2 Hildreth’s Dual Algorithm . 181

10.13 Minimum One-Norm Solutions . 182
10.13.1 Reformulation as an LP Problem . 183
10.13.2 Image Reconstruction . 184

10.14 Exercises . 185

163

164 A First Course in Optimization

10.1 Chapter Summary

Convex programming (CP) refers to the minimization of a convex func-
tion of one or several variables over a convex set. The convex set is often
defined in terms of inequalities involving other convex functions. We begin
by describing the basic problems of CP. We then discuss characterizations
of the solutions given by the Karush–Kuhn–Tucker (KKT) Theorem, the
concept of duality, and use these tools to solve certain CP problems.

10.2 The Primal Problem

Let f and gi, i = 1, ..., I, be convex functions defined on a nonempty
closed convex subset C of RJ . The primal problem in convex programming
(CP) is the following:

minimize f(x), subject to gi(x) ≤ 0, for i = 1, ..., I. (P) (10.1)

For notational convenience, we define g(x) = (g1(x), ..., gI(x)). Then P
becomes

minimize f(x), subject to g(x) ≤ 0. (P)

The feasible set for P is

F = {x|g(x) ≤ 0},

and the members of F are called feasible points for P.

Definition 10.1 The problem P is said to be consistent if F is not empty,
and super-consistent if there is x in F with gi(x) < 0 for all i = 1, ..., I.
Such a point x is then called a Slater point.

10.2.1 The Perturbed Problem

For each z in RI let

MP (z) = inf{f(x)|x ∈ C, g(x) ≤ z},

and MP = MP (0). The convex programming problem P(z) is to minimize
the function f(x) over x in C with g(x) ≤ z. The feasible set for P(z) is

F (z) = {x|g(x) ≤ z}.

Convex Programming 165

We shall be interested in properties of the function MP (z), in particular,
how the function MP (z) behaves as z moves away from z = 0.

For example, let f(x) = x2; the minimum occurs at x = 0. Now consider
the perturbed problem, minimize f(x) = x2, subject to x ≤ z. For z ≤ 0,
the minimum of the perturbed problem occurs at x = z, and we have
MP (z) = z2. For z > 0 the minimum of the perturbed problem is the
global minimum, which is at x = 0, so MP (z) = 0. The global minimum
of MP (z) also occurs at z = 0.

We have the following theorem concerning the function MP (z); see the
exercises for related results.

Theorem 10.1 The function MP (z) is convex and its domain, the set of
all z for which F (z) is not empty, is convex. If P is super-consistent, then
z = 0 is an interior point of the domain of MP (z).

Proof: See [176], Theorem 5.2.6.

From Theorem 9.18 we know that, if P is super-consistent, then there
is a vector u such that

MP (z) ≥MP (0) + 〈u, z − 0〉. (10.2)

In fact, we can show that, in this case, u ≤ 0. Suppose that ui > 0 for
some i. Since z = 0 is in the interior of the domain of MP (z), there is
r > 0 such that F (z) is not empty for all z with ||z|| < r. Let wj = 0 for
j 6= i and wi = r/2. Then F (w) is not empty and MP (0) ≥MP (w), since
F ⊆ F (w). But from Equation (10.2) we have

MP (w) ≥MP (0) +
r

2
ui > MP (0).

This is a contradiction, and we conclude that u ≤ 0.

10.2.2 The Sensitivity Vector and the Lagrangian

From now on we shall use λ∗ = −u instead of u. For any z we have

〈λ∗, z〉 ≥MP (0)−MP (z);

so for z ≥ 0 we have MP (z) ≤MP (0), and

〈λ∗, z〉 ≥MP (0)−MP (z) ≥ 0. (10.3)

The quantity 〈λ∗, z〉 measures how much MP (z) changes as we increase z
away from z = 0; for that reason, λ∗ is called the sensitivity vector, as well
as the vector of Lagrange multipliers.

166 A First Course in Optimization

The Lagrangian function for the problem P is the function

L(x, λ) = f(x) +

I∑
i=1

λigi(x) = f(x) + 〈λ, g(x)〉,

defined for all x in C and λ ≥ 0.
For each fixed x in C, let

F (x) = sup
λ≥0

L(x, λ).

If x is feasible for P, then f(x) ≥ L(x, λ), for all λ ≥ 0, so that f(x) ≥ F (x).
On the other hand, since f(x) = L(x, 0) ≤ F (x), we can conclude that
f(x) = F (x) for all feasible x in C. If x is not feasible, then F (x) = +∞.
Consequently, minimizing f(x) over all feasible x in C is equivalent to
minimizing F (x) over all x in C; that is, we have removed the constraint
that x be feasible for P. In the next section we pursue this idea further.

10.3 From Constrained to Unconstrained

In addition to being a measure of the sensitivity of MP (z) to changes
in z, the vector λ∗ can be used to convert the original constrained mini-
mization problem P into an unconstrained one.

Theorem 10.2 If the problem P has a sensitivity vector λ∗ ≥ 0, in par-
ticular, when P is super-consistent, then MP (0) = infx∈C L(x, λ∗), that
is,

MP (0) = inf
x∈C

(
f(x) + 〈λ∗, g(x)〉

)
. (10.4)

Proof: For any fixed x in the set C, the set

F (g(x)) = {t|g(t) ≤ g(x)}

contains t = x and therefore is nonempty. By Equation (10.3)

MP (g(x)) + 〈λ∗, g(x)〉 ≥MP (0).

Since x is in F (g(x)), we have

f(x) ≥MP (g(x)),

and it follows that
f(x) + 〈λ∗, g(x)〉 ≥MP (0).

Convex Programming 167

Therefore,

inf
x∈C

(
f(x) + 〈λ∗, g(x)〉

)
≥MP (0).

But

inf
x∈C

(
f(x) + 〈λ∗, g(x)〉

)
≤ inf
x∈C,g(x)≤0

(
f(x) + 〈λ∗, g(x)〉

)
,

and

inf
x∈C,g(x)≤0

(
f(x) + 〈λ∗, g(x)〉

)
≤ inf
x∈C,g(x)≤0

f(x) = MP (0),

since λ∗ ≥ 0 and g(x) ≤ 0.

Note that the theorem tells us that the two sides of Equation (10.4) are
equal. Although it is true, we cannot conclude, from Theorem 10.2 alone,
that if both sides have a minimizer then the minimizers are the same vector.

10.4 Saddle Points

To prepare for our discussion of the Karush–Kuhn–Tucker Theorem and
duality, we consider the notion of saddle points.

10.4.1 The Primal and Dual Problems

Suppose that X and Y are two nonempty sets and K : X × Y →
(−∞,∞) is a function of two variables. For each x in X, define the function
f(x) by the supremum

f(x) = sup
y
K(x, y), (10.5)

where the supremum, abbreviated “sup,” is the least upper bound of the
real numbers K(x, y), over all y in Y . Then we have

K(x, y) ≤ f(x), (10.6)

for all x. Similarly, for each y in Y , define the function g(y) by

g(y) = inf
x
K(x, y); (10.7)

here the infimum is the greatest lower bound of the numbers K(x, y), over
all x in X. Then we have

g(y) ≤ K(x, y), (10.8)

168 A First Course in Optimization

for all y in Y . Putting together (10.6) and (10.8), we have

g(y) ≤ K(x, y) ≤ f(x),

for all x and y. Now we consider two problems: the primal problem is
minimizing f(x) and the dual problem is maximizing g(y).

Definition 10.2 The pair (x̂, ŷ) is called a saddle point for the function
K(x, y) if, for all x and y, we have

K(x̂, y) ≤ K(x̂, ŷ) ≤ K(x, ŷ).

The number K(x̂, ŷ) is called the saddle value.

For example, the function K(x, y) = x2−y2 has (0, 0) for a saddle point,
with saddle value zero.

10.4.2 The Main Theorem

We have the following theorem, with the proof left to the reader.

Theorem 10.3 The following are equivalent:

(1) The pair (x̂, ŷ) forms a saddle point for K(x, y);

(2) The point x̂ solves the primal problem, that is, x̂ minimizes f(x), over
all x in X, and ŷ solves the dual problem, that is, ŷ maximizes g(y),
over all y in Y , and f(x̂) = g(ŷ).

When (x̂, ŷ) forms a saddle point for K(x, y), we have

g(y) ≤ K(x̂, ŷ) ≤ f(x),

for all x and y, so that the maximum value of g(y) and the minimum value
of f(x) are both equal to K(x̂, ŷ).

10.4.3 A Duality Approach to Optimization

Suppose that our original problem is to minimize a function f(x) over
x in some set X. One approach is to find a second set Y and a function
K(x, y) of two variables for which Equation (10.5) holds, use Equation
(10.7) to construct a second function g(y), defined for y in Y , and then
maximize g(y). If a saddle point exists, then, according to the theorem, we
have solved the original problem.

Convex Programming 169

10.5 The Karush–Kuhn–Tucker Theorem

We begin with sufficient conditions for a vector x∗ to be a solution to the
primal CP problem. Under certain restrictions, as specified by the Karush–
Kuhn–Tucker Theorem, these conditions become necessary, as well.

10.5.1 Sufficient Conditions

Proposition 10.1 Let x∗ be a member of C. If there is λ∗ ≥ 0 such that,
for all x ∈ C and all vectors λ ≥ 0, we have

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗),

then x∗ is feasible and x∗ solves the primal CP problem.

Proof: The proof is left as Exercise 10.1.

Corollary 10.1 If, for a given vector x∗ ∈ C, there is λ∗ ≥ 0 such that

L(x∗, λ∗) ≤ L(x, λ∗),

for all x ∈ C, and λ∗i gi(x
∗) = 0, for all i, then x∗ is feasible and x∗ solves

the primal CP problem.

Proof: The proof is left as Exercise 10.2.

10.5.2 The KKT Theorem: Saddle-Point Form

This form of the KKT Theorem does not require that the functions in-
volved be differentiable. The saddle-point form of the Karush–Kuhn–Tucker
(KKT) Theorem is the following.

Theorem 10.4 Let P, the primal CP problem, be super-consistent. Then
x∗ solves P if and only if there is a vector λ∗ such that

(1) λ∗ ≥ 0;

(2) L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗), for all x ∈ C and all λ ≥ 0;

(3) λ∗i gi(x
∗) = 0, for all i = 1, ..., I.

Proof: Since P is super-consistent and x∗ solves P, we know from Theorem
10.2 that there is λ∗ ≥ 0 such that

f(x∗) = inf
x∈C

L(x, λ∗).

170 A First Course in Optimization

We do not yet know that f(x∗) = L(x∗, λ∗), however. We do have

f(x∗) ≤ L(x∗, λ∗) = f(x∗) + 〈λ∗, g(x∗)〉,

though, and since λ∗ ≥ 0 and g(x∗) ≤ 0, we also have

f(x∗) + 〈λ∗, g(x∗)〉 ≤ f(x∗).

Now we can conclude that f(x∗) = L(x∗, λ∗) and 〈λ∗, g(x∗)〉 = 0. It follows
that λ∗i gi(x

∗) = 0, for all i = 1, ..., I. Since, for λ ≥ 0,

L(x∗, λ∗)− L(x∗, λ) = 〈λ∗ − λ, g(x∗)〉 = 〈−λ, g(x∗)〉 ≥ 0,

we also have
L(x∗, λ) ≤ L(x∗, λ∗),

for all λ ≥ 0.
Conversely, suppose that x∗ and λ∗ satisfy the three conditions of the

theorem. First, we show that x∗ is feasible for P, that is, g(x∗) ≤ 0. Let i
be fixed and take λ to have the same entries as λ∗, except that λi = λ∗i +1.
Then we have λ ≥ 0 and

0 ≤ L(x∗, λ∗)− L(x∗, λ) = −gi(x∗).

Also,

f(x∗) = L(x∗, 0) ≤ L(x∗, λ∗) = f(x∗) + 〈λ∗, g(x∗)〉 = f(x∗),

so
f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗).

But we also have

L(x∗, λ∗) ≤ inf
x∈C

(
f(x) + 〈λ∗, g(x)〉

)
≤ inf
x∈C,g(x)≤0

f(x).

We conclude that f(x∗) = MP (0), and since x∗ is feasible for P, x∗ solves
P.

Condition (3) is called complementary slackness. If gi(x
∗) = 0, we say

that the ith constraint is binding.

10.5.3 The KKT Theorem: The Gradient Form

Now we assume that the functions f(x) and gi(x) are differentiable.

Theorem 10.5 Let P be super-consistent. Then x∗ solves P if and only if
there is a vector λ∗ such that

Convex Programming 171

(1) λ∗ ≥ 0;

(2) λ∗i gi(x
∗) = 0, for all i = 1, ..., I;

(3) ∇f(x∗) +
∑I
i=1 λ

∗
i∇gi(x∗) = 0.

The proof is similar to the previous one and we omit it. The interested
reader should consult [176, p. 185].

10.6 On Existence of Lagrange Multipliers

As we saw previously, if P is super-consistent, then z = 0 is in the in-
terior of the domain of the function MP (z), and so the sub-differential of
MP (z) is nonempty at z = 0. The sub-gradient d was shown to be nonpos-
itive and we defined the sensitivity vector, or the vector of Lagrange mul-
tipliers, to be λ∗ = −d. Theorem 10.5 tells us that if P is super-consistent
and x∗ solves P, then the vector∇f(x∗) is a nonnegative linear combination
of the vectors −∇gi(x∗). This sounds like the assertion in Farkas’ Lemma.

For any point x, define the set

B(x) = {i|gi(x) = 0},

and
Z(x) = {z|zT∇gi(x) ≤ 0, i ∈ B(x), and zT∇f(x) < 0}.

If Z(x) is empty, then
zT (−∇gi(x)) ≥ 0

for i ∈ B(x) implies
zT∇f(x) ≥ 0,

which, by Farkas’ Lemma, implies that ∇f(x) is a nonnegative linear com-
bination of the vectors −∇gi(x) for i ∈ B(x). The objective, then, is to
find some condition which, if it holds at the solution x∗, will imply that
Z(x∗) is empty; first-order necessary conditions are of this sort. It will then
follow that there are nonnegative Lagrange multipliers for which

∇f(x∗) +

I∑
i=1

λ∗i∇gi(x∗) = 0;

for i not in B(x∗) we let λ∗i = 0. For more discussion of this issue, see
Fiacco and McCormick [112].

172 A First Course in Optimization

10.7 The Problem of Equality Constraints

We consider now what happens when some of the constraints are equal-
ities.

10.7.1 The Problem

Let f and gi, i = 1, ..., I, be differentiable functions defined on RJ . We
consider the following problem: Minimize f(x), subject to the constraints
gi(x) ≤ 0, for i = 1, ...,K, and gi(x) = 0, for i = K + 1, ..., I. If 1 ≤ K < I,
the constraints are said to be mixed. If K = I, there are only inequality
constraints, so, for convex f(x) and gi(x), the problem is P, given by (10.1).
If K < I, we cannot convert it to a CP problem by rewriting the equality
constraints as gi(x) ≤ 0 and −gi(x) ≤ 0, since then we would lose the
convexity property of the constraint functions. Nevertheless, a version of
the KKT Theorem holds for such problems.

Definition 10.3 The feasible set for this problem is the set F of all x
satisfying the constraints.

Definition 10.4 The problem is said to be consistent if F is not empty.

Definition 10.5 Let I(x) be the set of all indices 1 ≤ i ≤ I for which
gi(x) = 0. The point x is regular if the set of gradients {∇gi(x)|i ∈ I(x)}
is linearly independent.

10.7.2 The KKT Theorem for Mixed Constraints

The following version of the KKT Theorem provides a necessary con-
dition for a regular point x∗ to be a local constrained minimizer.

Theorem 10.6 Let x∗ be a regular point for the problem described in Sub-
section 10.7.1. If x∗ is a local constrained minimizer of f(x), then there is
a vector λ∗ such that

(1) λ∗i ≥ 0, for i = 1, ...,K;

(2) λ∗i gi(x
∗) = 0, for i = 1, ...,K;

(3) ∇f(x∗) +
∑I
i=1 λ

∗
i∇gi(x∗) = 0.

Note that, if there are some equality constraints, then the vector λ need
not be nonnegative.

Convex Programming 173

10.7.3 The KKT Theorem for LP

Consider the LP problem PS: Minimize z = cTx, subject to Ax = b and
x ≥ 0. We let

z = f(x) = cTx,

gi(x) = bi − (Ax)i,

for i = 1, ..., I, and
gi(x) = −xj ,

for i = I + 1, ..., I + J and j = i− I. We assume that I < J and that the
I by J matrix A has rank I. Then, since −∇gi(x) is ai, the ith column
of AT , the vectors {∇gi(x) |i = 1, ..., I} are linearly independent and every
x > 0 is a regular point.

Suppose that a regular point x∗ solves PS. Let λ∗ be the vector in RI+J
whose existence is guaranteed by Theorem 10.6. Denote by y∗ the vector in
RI whose entries are the first I entries of λ∗, and r the nonnegative vector
in RJ whose entries are the last J entries of λ∗. Then, applying Theorem
10.6, we have rTx∗ = 0, Ax∗ = b, and

c−
I∑
i=1

λ∗i a
i +

J∑
j=1

rj(−δj) = 0,

or,
c−AT y∗ = r ≥ 0,

where δj is the column vector whose jth entry is one and the rest are zero.
The KKT Theorem for this problem is then the following.

Theorem 10.7 Let A have full rank I. The regular point x∗ solves PS if
and only if there are vectors y∗ in RI and r ≥ 0 in RJ such that

(1) Ax∗ = b;

(2) r = c−AT y∗;

(3) rTx∗ = 0.

Then y∗ solves DS.

The first condition in the theorem is primal feasibility, the second one is
dual feasibility, and the third is complementary slackness. The first two con-
ditions tell us that x∗ is feasible for PS and y∗ is feasible for DS. Combining
these two conditions with complementary slackness, we can write

z∗ = cTx∗ = (AT y∗ + r)Tx∗ = (AT y∗)Tx∗ + rTx∗ = (y∗)T b = w∗,

so z∗ = w∗ and there is no duality gap. Invoking Corollary 6.2 to the
Weak Duality Theorem, we conclude that x∗ and y∗ solve their respective
problems.

174 A First Course in Optimization

10.7.4 The Lagrangian Fallacy

As Kalman notes in [135], it is quite common, when discussing the
use of Lagrange multipliers in optimization, to say, incorrectly, that the
problem of minimizing f(x), subject to g(x) = 0, has been converted into
the problem of finding a local minimum of the Lagrangian function L(x, λ),
as a function of (x, λ). The following example, taken from [135], shows that
this interpretation is false.

Minimize the function f(x, y) = x2+y2, subject to g(x, y) = xy−1 = 0.
Using a Lagrange multiplier λ, and the Lagrangian

L(x, y, λ) = x2 + y2 + λ(xy − 1) = (x− y)2 + λ(xy − 1) + 2xy,

we find that
2x+ λy = 0,

2y + λx = 0,

and
xy − 1 = 0.

It follows that x = 1, y = 1, λ = −2, and L(1, 1,−2) = 2. Now let us
move away from the point (1, 1,−2) along the line (x, x,−2 + t), so that
the Lagrangian takes on the values

L(x, x,−2 + t) = (x− x)2 + (−2 + t)(x2 − 1) + 2x2 = 2 + t(x2 − 1).

For small positive values of t, the Lagrangian takes on values greater than
2, while, for small negative values of t, its values are smaller than 2.

10.8 Two Examples

We illustrate the use of the gradient form of the KKT Theorem with
two examples that appeared in the paper of Driscoll and Fox [100].

10.8.1 A Linear Programming Problem

Minimize f(x1, x2) = 3x1 + 2x2, subject to the constraints 2x1 + x2 ≥
100, x1 + x2 ≥ 80, x1 ≥ 0 and x2 ≥ 0. We define

g1(x1, x2) = 100− 2x1 − x2,
g2(x1, x2) = 80− x1 − x2,
g3(x1, x2) = −x1, and

g4(x1, x2) = −x2.

Convex Programming 175

The Lagrangian is then

L(x, λ) = 3x1 + 2x2 +λ1(100− 2x1−x2) +λ2(80−x1−x2)−λ3x1−λ4x2.

From the KKT Theorem, we know that, if there is a solution x∗, then there
is λ∗ ≥ 0 with

f(x∗) = L(x∗, λ∗) ≤ L(x, λ∗),

for all x. For notational simplicity, we write λ in place of λ∗.
Taking the partial derivatives of L(x, λ) with respect to the variables

x1 and x2, we get

3− 2λ1 − λ2 − λ3 = 0, and 2− λ1 − λ2 − λ4 = 0.

The complementary slackness conditions are

λ1 = 0, if 2x1 + x2 6= 100,

λ2 = 0, if x1 + x2 6= 80,

λ3 = 0, if x1 6= 0,

λ4 = 0, if x2 6= 0.

A little thought reveals that precisely two of the four constraints must
be binding. Examining the six cases, we find that the only case satisfying
all the conditions of the KKT Theorem is λ3 = λ4 = 0. The minimum
occurs at x1 = 20 and x2 = 60 and the minimum value is f(20, 60) = 180.

We can use these results to illustrate Theorem 10.2. The sensitivity
vector is λ∗ = (1, 1, 0, 0) and the Lagrangian function at λ∗ is

L(x, λ∗) = 3x1 + 2x2 + 1(100− 2x1 − x2) + 1(80− x1 − x2).

In this case, we find that L(x, λ∗) = 180, for all x.

10.8.2 A Nonlinear Convex Programming Problem

Minimize the function

f(x1, x2) = (x1 − 14)2 + (x2 − 11)2,

subject to

g1(x1, x2) = (x1 − 11)2 + (x2 − 13)2 − 49 ≤ 0,

and
g2(x1, x2) = x1 + x2 − 19 ≤ 0.

176 A First Course in Optimization

The Lagrangian is then

L(x, λ) = (x1 − 14)2 + (x2 − 11)2

+ λ1

(
(x1 − 11)2 + (x2 − 13)2 − 49

)
+ λ2

(
x1 + x2 − 19

)
.

Again, we write λ in place of λ∗. Setting the partial derivatives, with respect
to x1 and x2, to zero, we get the KKT equations

2x1 − 28 + 2λ1x1 − 22λ1 + λ2 = 0,

and
2x2 − 22 + 2λ1x2 − 26λ1 + λ2 = 0.

The complementary slackness conditions are

λ1 = 0, if (x1 − 11)2 + (x2 − 13)2 6= 49,

λ2 = 0, if x1 + x2 6= 19.

There are four cases to consider. First, if neither constraint is binding, the
KKT equations have solution x1 = 14 and x2 = 11, which is not feasible.
If only the first constraint is binding, we obtain two solutions, neither
feasible. If only the second constraint is binding, we obtain x∗1 = 11, x∗2 = 8,
and λ2 = 6. This is the optimal solution. If both constraints are binding,
we obtain, with a bit of calculation, two solutions, neither feasible. The
minimum value is f(11, 8) = 18, and the sensitivity vector is λ∗ = (0, 6).
Using these results, we once again illustrate Theorem 10.2.

The Lagrangian function at λ∗ is

L(x, λ∗) = (x1 − 14)2 + (x2 − 11)2 + 6(x1 + x2 − 19).

Setting to zero the first partial derivatives of L(x, λ∗), we get

0 = 2(x1 − 14) + 6,

and
0 = 2(x2 − 11) + 6,

so that x∗1 = 11 and x∗2 = 8. Note that Theorem 10.2 only guarantees that
18 is the infimum of the function L(x, λ∗). It does not say that this smallest
value must occur at x = x∗ or even occurs anywhere; that is, it does not
say that L(x∗, λ∗) ≤ L(x, λ∗). This stronger result comes from the KKT
Theorem.

In this problem, we are able to use the KKT Theorem and a case-by-
case analysis to find the solution because the problem is artificial, with few
variables and constraints. In practice there will be many more variables
and constraints, making such a case-by-case approach impractical. It is for
that reason that we turn to iterative optimization methods.

Convex Programming 177

10.9 The Dual Problem

The dual problem (DP) corresponding to P is to maximize

h(λ) = inf
x∈C

L(x, λ),

for λ ≥ 0. Let

MD = sup
λ≥0

h(λ). (10.9)

A vector λ ≥ 0 is feasible for DP if h(λ) > −∞. Then DP is consistent if
there are feasible λ. Recall that Theorem 10.2 tells us that if a sensitivity
vector λ∗ ≥ 0 exists, then h(λ∗) = MP .

10.9.1 When Is MP = MD?

We have the following theorem.

Theorem 10.8 Assume that P is super-consistent, so that there is a sen-
sitivity vector λ∗ ≥ 0, and that MP is finite. Then

(1) MP = MD;

(2) MD = h(λ∗), so the supremum in Equation (10.9) is attained at λ∗;

(3) if the infimum in the definition of MP is attained at x∗, then
〈λ∗, g(x∗)〉 = 0;

(4) such an x∗ also minimizes L(x, λ∗) over x ∈ C.

Proof: For all λ ≥ 0 we have

h(λ) = inf
x∈C

L(x, λ) ≤ inf
x∈C,g(x)≤0

L(x, λ) ≤ inf
x∈C,g(x)≤0

f(x) = MP.

Therefore, MD ≤MP . The difference MP −MD is known as the duality
gap for CP. We also know that

MP = h(λ∗) ≤MD,

so MP = MD, and the supremum in the definition of MD is attained at
λ∗. From

f(x∗) = MP = inf
x∈C

L(x, λ∗) ≤ inf
x∈C,g(x)≤0

L(x, λ∗)

≤ L(x∗, λ∗) ≤ f(x∗),

it follows that 〈λ∗, g(x∗)〉 = 0.

178 A First Course in Optimization

10.9.2 The Primal-Dual Method

From Theorem 10.8 we see that one approach to solving P is to solve DP
for λ∗ and then minimize L(x, λ∗) over x ∈ C. This is useful only if solv-
ing DP is simpler than solving P directly. Each evaluation of h(λ) involves
minimizing L(x, λ) over x ∈ C. Once we have found λ∗, we find x∗ by min-
imizing L(x, λ∗) over x ∈ C. The advantage is that all the minimizations
are over all x ∈ C, not over just the feasible vectors.

10.9.3 Using the KKT Theorem

As we noted previously, using the KKT Theorem and a case-by-case
analysis, as in the example problems, is not practical for real-world prob-
lems involving many variables and constraints. The KKT Theorem can,
however, tell us something about the nature of the solution, and perhaps
help us design an algorithm to solve the problem, as the following two
examples illustrate.

10.10 Nonnegative Least-Squares Solutions

If there is no solution to a system of linear equations Ax = b, then we
may seek a least-squares “solution,” which is a minimizer of the function

f(x) =

I∑
i=1

((J∑
m=1

Aimxm

)
− bi

)2

= ||Ax− b||22.

The partial derivative of f(x) with respect to the variable xj is

∂f

∂xj
(x) = 2

I∑
i=1

Aij

((J∑
m=1

Aimxm

)
− bi

)
.

Setting the gradient equal to zero, we find that to get a least-squares solu-
tion we must solve the system of equations

AT (Ax− b) = 0.

Now we consider what happens when the additional constraints xj ≥ 0 are
imposed.

This problem fits into the CP framework, when we define

gj(x) = −xj ,

Convex Programming 179

for each j. Let x̂ be a least-squares solution. According to the KKT The-
orem, for those values of j for which x̂j is not zero we have λ∗j = 0 and
∂f
∂xj

(x̂) = 0. Therefore, if x̂j 6= 0,

0 =

I∑
i=1

Aij

((J∑
m=1

Aimx̂m

)
− bi

)
.

Let Q be the matrix obtained from A by deleting columns j for which
x̂j = 0. Then we can write

QT (Ax̂− b) = 0.

If the matrix Q has full rank, which will almost always be the case, and has
at least I columns, then QT is a one-to-one linear transformation, which
implies that Ax̂ = b. Therefore, when there is no nonnegative solution of
Ax = b, Q must have fewer than I columns, which means that x̂ has fewer
than I nonzero entries. We can state this result more formally.

Definition 10.6 The matrix A has the full-rank property if A and every
matrix Q obtained from A by deleting columns have full rank.

Theorem 10.9 Let A have the full-rank property. Suppose there is no non-
negative solution to the system of equations Ax = b. Then there is a subset
S of the set {j = 1, 2, ..., J}, with cardinality at most I − 1, such that, if x̂
is any minimizer of ||Ax − b||2 subject to x ≥ 0, then x̂j = 0 for j not in
S. Therefore, x̂ is unique.

This result has some practical implications in medical image reconstruction.

10.11 An Example in Image Reconstruction

In many areas of image processing, including medical imaging, the vec-
tor x is a vectorized image that we seek, whose typically nonnegative entries
are the unknown pixel values, the entries of b are measurements obtained
through the use of some device, such as a CAT-scan, and the matrix A
describes, usually imperfectly, the relationship between the desired image
x and the data b. In transmission tomography the data is often viewed as
integrals along line segments through the object; in the discrete version,
the data may be viewed as the sums of the xj for those j for which the
associated pixel intersects the given line segment. A crude estimate of the
matrix A is to define Ai,j = 1 if the ith line segment intersects the jth

180 A First Course in Optimization

pixel, and Ai,j = 0 otherwise. Note that the matrix A is sparse, that is,
most of its entries are zero. This is typical of such remote-sensing problems.

It is helpful to note that the matrix A as just presented does not do a
very good job of describing how the data is related to the pixels. By using
only the values zero or one, we ignore the obvious fact that a line segment
may intersect most of one pixel, while touching only a little of another. We
need to improve A, if we are to reduce the model error. We can do a better
job by taking the entries of A to be numbers between zero and one that
are the relative sizes of the intersection of the given line segment with the
given pixel.

There are other sources of error, as well: the line-integral model is only
an approximation; x-rays do not travel along exact straight lines, but along
narrow strips; the frequency content of the rays can change as the rays
travel through the body; the measured data are not precisely the sums given
by the vector Ax, regardless of how accurately we describe the intersection
of the line segments with the pixels. In short, the vector b also contains
noise, known as measurement noise. For all these reasons, there may not be
exact nonnegative solutions of Ax = b, and even if there are such solutions,
they may not be suitable for diagnosis.

Once the data is obtained, the number of measurements I is determined.
The number of pixels J is not yet fixed, and we can select J to suit our
needs. The scene being imaged or the patient being scanned has no pixels;
these are artificially imposed by us. If J is too small, we will not obtain the
desired resolution in the reconstructed image.

In the hope of improving the resolution of the reconstructed image, we
may be tempted to take J , the number of pixels, larger than I, the number
of equations arising from our measurement. Since the vector b consists
of measured data, it is noisy and there may well not be a nonnegative
exact solution of Ax = b. As a result, the image obtained by nonnegatively
constrained least-squares will have at most I − 1 nonzero entries; many of
the pixels will be zero and they will be scattered throughout the image,
making it unusable. The reconstructed images resemble stars in a night
sky, and, as a result, the theorem is sometimes described as the “night
sky” theorem.

This “night sky” phenomenon is not restricted to least squares. The
same thing happens with methods based on the Kullback–Leibler distance,
such as MART, EMML and SMART [39]. These algorithms are discussed
in some detail in Chapter 11.

Convex Programming 181

10.12 Solving the Dual Problem

In this section we use the KKT Theorem to derive an iterative algorithm
to minimize the function

f(x) =
1

2
‖x‖22,

subject to Ax ≥ b, by solving the dual problem of maximizing h(λ), over
λ ≥ 0.

10.12.1 The Primal and Dual Problems

Minimizing f(x) over x such that Ax ≥ b is the primal problem. Here
we let gi = bi − (Ax)i, for i = 1, ..., I, and the set C be all of RJ . The
Lagrangian is then

L(x, λ) =
1

2
||x||22 − λTAx+ λT b.

The infimum of L(x, λ) over all x occurs when x = ATλ and so

h(λ) = λT b− 1

2
||ATλ||22.

For any x satisfying Ax ≥ b and any λ ≥ 0 we have h(λ) ≤ f(x). If x∗ is
the unique solution of the primal problem and λ∗ any solution of the dual
problem, we have f(x∗) = h(λ∗). The point here is that the constraints
in the dual problem are easier to implement in an iterative algorithm, so
solving the dual problem is the simpler task.

The algorithm we present now calculates iteratively two sequences, {xk}
and {λk}, such that f(xk)−h(λk) converges to zero. The limits of {xk} and
{λk} will be the solutions of the primal and dual problems, respectively.

10.12.2 Hildreth’s Dual Algorithm

The iterative algorithm we describe here was originally published by
Hildreth [128], and later extended by Lent and Censor [148]. It is a row-
action method in that, at each step of the iteration, only a single row of
the matrix A is used. Having found xk and λk, we use i = k(mod I) + 1,
Ai the i-th row of A, and bi to calculate xk+1 and λk+1.

We know that the optimal x∗ and λ∗ ≥ 0 must satisfy x∗ = ATλ∗.
Therefore, the algorithm guarantees that, at each step, we have λk > 0
and xk = ATλk.

182 A First Course in Optimization

Having found xk and λk, we proceed as follows. First, we select i =
k(mod I) + 1. Since

h(λ) = bTλ− 1

2
‖ATλ‖22,

we have
∇h(λ) = b−AATλ.

A gradient ascent method to maximize h(λ) would then have the iterative
step

λk+1 = λk + γk(b−AATλk) = λk + γk(b−Axk),

for some γk > 0. A row-action variant of gradient ascent modifies only the
i-th entry of λ at the k-th step, with

λk+1
i = λk

i + γk(bi − (Axk)i).

Since we require that λk+1 ≥ 0, when (bi − (Axk)i) < 0 we must select γk
so that

γk(bi − (Axk)i) ≥ −λk
i .

We then have
xk+1 = xk + γk(bi − (Axk)i)A

T
i ,

which is used in the next step, in forming ∇h(λk+1). Proof of convergence
of this algorithm is presented in [83].

10.13 Minimum One-Norm Solutions

When the system of linear equations Ax = b is under-determined, it
is common practice to seek a solution that also minimizes some objective
function. For example, the minimum two-norm solution is the vector x
satisfying Ax = b for which the (square of the) two-norm,

||x||22 =

J∑
j=1

x2
j ,

is minimized. Alternatively, we may seek the minimum one-norm solution,
for which the one-norm,

||x||1 =

J∑
j=1

|xj |,

is minimized.
If the vector x is required to be nonnegative, then the one-norm is

simply the sum of the entries, and minimizing the one-norm subject to

Convex Programming 183

Ax = b becomes a linear programming problem. This is the situation in
applications involving image reconstruction.

In compressed sensing and compressed sampling [98] one seeks a solution
of Ax = b having the minimal number of nonzero entries; the vector x here
is not assumed to be nonnegative. Under certain restrictions on the matrix
A, the solution can be found by minimizing the one-norm of x, subject to
the constraints Ax = b. The one-norm is not a linear functional of x, but
the problem can still be converted into a linear programming problem, as
we shall see next.

10.13.1 Reformulation as an LP Problem

The entries of x need not be nonnegative, so the problem is not yet a
linear programming problem. Let

B =
[
A −A

]
,

and consider the linear programming problem of minimizing the function

cT z =

2J∑
j=1

zj ,

subject to the constraints z ≥ 0, and Bz = b. Let z∗ be the solution. We
write

z∗ =

[
u∗

v∗

]
.

Then, as we shall see, x∗ = u∗ − v∗ minimizes the one-norm, subject to
Ax = b.

First, we show that u∗jv
∗
j = 0, for each j. If, say, there is a j such that

0 < v∗j ≤ u∗j , then we can create a new vector z from z∗ by replacing the
old u∗j with u∗j − v∗j and the old v∗j with zero, while maintaining Bz = b.

But then, since u∗j − v∗j < u∗j + v∗j , it follows that cT z < cT z∗, which is a

contradiction. Consequently, we have ‖x∗‖1 = cT z∗.
Now we select any x with Ax = b. Write uj = xj , if xj ≥ 0, and uj = 0,

otherwise. Let vj = uj − xj , so that x = u− v. Then let

z =

[
u
v

]
.

Then b = Ax = Bz, and cT z = ‖x‖1. Therefore

‖x∗‖1 = cT z∗ ≤ cT z = ‖x‖1,

and x∗ must be a minimum one-norm solution.
The reader is invited to provide an example showing that a minimum

one-norm solution of Ax = b need not be unique.

184 A First Course in Optimization

10.13.2 Image Reconstruction

In image reconstruction from limited linear-functional data, the vector
x is nonnegative and arises as a vectorization of a two-dimensional image.
The data we have pertaining to x is linear and takes the form Ax = b, for
some matrix A and vector b. Typically, the problem is under-determined,
since the number of entries of x is the number of pixels in the image, which
we can make as large as we wish. The problem then is to select, from
among all the feasible images, one particular one that has a good chance
of being near the correct image. One approach is to take the solution of
Ax = b having the minimum Euclidean norm, ||x||2. Algorithms such as the
projected ART and projected Landweber iterative methods can be used to
find such solutions.

Another approach is to find the nonnegative solution of Ax = b for
which the one-norm,

||x||1 =

J∑
j=1

|xj |,

is minimized [98]. Since the xj are to be nonnegative, the problem becomes
the following: Minimize

f(x) =

J∑
j=1

xj ,

subject to
gi(x) = (Ax)i − bi = 0,

for i = 1, ..., I, and
gi(x) = −xi−I ≤ 0,

for i = I + 1, ..., I + J .
When the system Ax = b is under-determined, the minimum one-norm

solution tends to be sparser than the minimum two-norm solution. A simple
example will illustrate this point.

Consider the equation x+ 2y = 1. The minimum two-norm solution is

(0.2, 0.4), with two-norm
√
5
5 , which is about 0.4472, but one-norm equal

to 0.6. The solution (0, 0.5) has two-norm and one-norm equal to 0.5, and
the solution (1.0, 0) has two-norm and one-norm equal to 1.0. Therefore,
the minimum one-norm solution is (0, 0.5), not (0.2, 0.4).

We can write the one-norm of the vector x as

||x||1 =

J∑
j=1

|xj |2

|xj |
.

The PDFT approach to image reconstruction [34, 35, 53, 64] selects the

Convex Programming 185

solution of Ax = b that minimizes the weighted two-norm

||x||2w =

J∑
j=1

|xj |2

pj
=

J∑
j=1

|xj |2wj ,

where pj > 0 is a prior estimate of the nonnegative image x to be re-
constructed, and wj = p−1j . To the extent that pj accurately models the
main features of x, such as which xj are nearly zero and which are not,
the two approaches should give similar reconstructions. The PDFT can be
implemented using the ART algorithm (see [189, 190, 191]).

10.14 Exercises

Ex. 10.1 Prove Proposition 10.1.

Ex. 10.2 Prove Corollary 10.1.

Ex. 10.3 Show that, although K(1, 1) = 0, which is the saddle value, the
point (1, 1) is not a saddle point for the function K(x, y) = x2 − y2.

Ex. 10.4 Prove Theorem 10.3.

Ex. 10.5 Apply the gradient form of the KKT Theorem to minimize the
function f(x, y) = (x+ 1)2 + y2 over all x ≥ 0 and y ≥ 0.

Ex. 10.6 [112] Consider the following problem: Minimize the function

f(x, y) = |x− 2|+ |y − 2|,

subject to
g(x, y) = y2 − x ≤ 0,

and
h(x, y) = x2 + y2 − 1 = 0.

Illustrate this problem graphically, showing lines of constant value of f and
the feasible region of points satisfying the constraints. Where is the solution
of the problem? Where is the solution, if the equality constraint is removed?
Where is the solution, if both constraints are removed?

Ex. 10.7 [176, Ex. 5.2.9 (a)] Minimize the function

f(x, y) =
√
x2 + y2,

subject to
x+ y ≤ 0.

Show that the function MP (z) is not differentiable at z = 0.

186 A First Course in Optimization

Ex. 10.8 [176, Ex. 5.2.9 (b)] Minimize the function

f(x, y) = −2x− y,

subject to
x+ y ≤ 1,

0 ≤ x ≤ 1,

and
y ≥ 0.

Again, show that the function MP (z) is not differentiable at z = 0.

Ex. 10.9 (Duffin [176, Ex. 5.2.9 (c)]) Minimize the function

f(x, y) = e−y,

subject to √
x2 + y2 − x ≤ 0.

Show that the function MP (z) is not continuous at z = 0.

Ex. 10.10 Apply the theory of convex programming to the primal
Quadratic Programming Problem (QP), which is to minimize the function

f(x) =
1

2
xTQx,

subject to
aTx ≤ c,

where a 6= 0 is in RJ , c < 0 is real, and Q is symmetric, and positive-
definite.

Ex. 10.11 Use Theorem 10.6 to prove that any real N by N symmetric
matrix has N mutually orthonormal eigenvectors.

Chapter 11

Iterative Optimization

11.1 Chapter Summary . 188
11.2 The Need for Iterative Methods . 188
11.3 Optimizing Functions of a Single Real Variable 189
11.4 Iteration and Operators . 189
11.5 The Newton–Raphson Approach . 190

11.5.1 Functions of a Single Variable . 191
11.5.2 Functions of Several Variables . 191

11.6 Approximate Newton–Raphson Methods . 192
11.6.1 Avoiding the Hessian Matrix . 192
11.6.2 The BFGS Method . 193
11.6.3 The Broyden Class . 193
11.6.4 Avoiding the Gradient . 194

11.7 Derivative-Free Methods . 194
11.7.1 Multi-Directional Search Algorithms . 194
11.7.2 The Nelder–Mead Algorithm . 195
11.7.3 Comments on the Nelder–Mead Algorithm 195

11.8 Rates of Convergence . 196
11.8.1 Basic Definitions . 196
11.8.2 Illustrating Quadratic Convergence . 196
11.8.3 Motivating the Newton–Raphson Method 196

11.9 Descent Methods . 197
11.10 Optimizing Functions of Several Real Variables 198
11.11 Projected Gradient-Descent Methods . 199
11.12 Auxiliary-Function Methods . 201
11.13 Feasible-Point Methods . 203

11.13.1 The Projected Gradient Algorithm . 204
11.13.2 Reduced Gradient Methods . 204
11.13.3 The Reduced Newton–Raphson Method 205
11.13.4 An Example . 205
11.13.5 A Primal-Dual Approach . 206

11.14 Quadratic Programming . 207
11.14.1 The Quadratic-Programming Problem 207
11.14.2 An Example . 210
11.14.3 Equality Constraints . 210
11.14.4 Sequential Quadratic Programming . 211

187

188 A First Course in Optimization

11.15 Simulated Annealing . 212
11.16 Exercises . 212

11.1 Chapter Summary

Now we begin our discussion of iterative methods for solving optimiza-
tion problems. Topics include the role of the gradient operator, the Newton–
Raphson (NR) method, and various computationally simpler variants of the
NR method.

11.2 The Need for Iterative Methods

We know from beginning calculus that, if we want to optimize a differ-
entiable function g(x) of a single real variable x, we begin by finding the
places where the derivative is zero, g′(x) = 0. Similarly, if we want to opti-
mize a differentiable function g(x) of a real vector variable x, we begin by
finding the places where the gradient is zero, ∇g(x) = 0. Generally, though,
this is not the end of the story, for we still have to solve an equation for
the optimal x. Unless we are fortunate, solving this equation algebraically
may be computationally expensive, or may even be impossible, and we will
need to turn to iterative methods. This suggests that we might use iterative
methods to minimize g(x) directly, and not solve an equation.

For example, suppose we wish to solve the over-determined system of
linear equations Ax = b, but we don’t know if the system has solutions. In
that case, we may wish to minimize the function

g(x) =
1

2
‖Ax− b‖22,

to get a least-squares solution. We know from linear algebra that if the
matrix ATA is invertible, then the unique minimizer of g(x) is given by

x∗ = (ATA)−1AT b.

In many applications, the number of equations and the number of unknowns
may be quite large, making it expensive even to calculate the entries of the
matrix ATA. In such cases, we can find x∗ using an iterative method such
as Landweber’s Algorithm, which has the iterative step

xk+1 = xk + γAT (b−Axk).

Iterative Optimization 189

The sequence {xk} converges to x∗ for any value of γ in the interval
(0, 2/λmax), where λmax is the largest eigenvalue of the matrix ATA.

11.3 Optimizing Functions of a Single Real Variable

Suppose g : R→ R is differentiable and attains its minimum value. We
want to minimize the function g(x). Solving g′(x) = 0 to find the optimal
x = x∗ may not be easy, so we may turn to an iterative algorithm for
finding roots of g′(x), or one that minimizes g(x) directly. Consider the
following iterative procedure

xk+1 = xk − γkg′(xk), (11.1)

for some sequence {γk} of positive numbers. Such iterative procedures are
called descent algorithms because, if g′(xk) > 0, then we want to move
to the left of xk, while, if g′(xk) < 0, we want to move to the right. If,
at each step, we determine γk by minimizing the function of γ given by
f(xk − γg′(xk)), the iterative algorithm in Equation (11.1) is called the
steepest descent method.

We shall be particularly interested in algorithms in which γk = γ for
all k. We denote by T the operator

Tx = x− γg′(x).

Then, using g′(x∗) = 0, we find that

|x∗ − xk+1| = |Tx∗ − Txk|.

11.4 Iteration and Operators

The iterative methods we shall consider involve the calculation of a
sequence {xk} of vectors in RJ , according to the formula xk+1 = Txk,
where T is some function T : RJ → RJ ; such functions are called operators
on RJ . The operator Tx = x− g′(x) above is an operator on R.

Definition 11.1 An operator T on RJ is continuous at x in the interior
of its domain if

lim
z→x
‖Tz − Tx‖ = 0.

190 A First Course in Optimization

The sequences generated by iterative methods can then be written
{T kx0}, where x = x0 is the starting point for the iteration and T k means
apply the operator T k times. All the operators we shall consider are con-
tinuous. If the sequence {xk} converges to a limit vector x̂ in the domain
of T , then, taking the limit, as k → +∞, on both sides of

xk+1 = Txk,

and using the continuity of the operator T , we have

x̂ = T x̂,

that is, the limit vector x̂ is a fixed point of T .

Definition 11.2 A vector x in the domain of the operator T is a fixed
point of T if T x̂ = x̂. The set of all fixed points of T is denoted Fix(T).

We have several concerns, when we use iterative methods:

• Does the operator T have any fixed points?

• Does the sequence {T kx0} converge?

• Does convergence depend on the choice of x0?

• If it does converge, does the limit depend on the starting vector x0?
If so, how?

• When the sequence {T kx0} converges, is the limit a solution to our
problem?

• How fast does the sequence {T kx0} converge?

• How difficult is it to perform a single step, going from xk to xk+1?

To answer these questions, we will need to learn about the properties of
the particular operator T being used.

We begin our study of iterative optimization algorithms with the well-
known Newton–Raphson method and its various modifications. Then we
turn to gradient descent methods, particularly as they apply to convex
functions.

11.5 The Newton–Raphson Approach

The Newton–Raphson approach to minimizing a real-valued function
f : RJ → R involves finding x∗ such that ∇f(x∗) = 0.

Iterative Optimization 191

11.5.1 Functions of a Single Variable

We begin with the problem of finding a root of a function g : R→ R. If
x0 is not a root, compute the line tangent to the graph of g at x = x0 and
let x1 be the point at which this line intersects the horizontal axis; that is,

x1 = x0 − g(x0)/g′(x0).

Continuing in this fashion, we have

xk+1 = xk − g(xk)/g′(xk).

This is the Newton–Raphson algorithm for finding roots. Convergence, when
it occurs, is usually more rapid than steepest descent, but requires that x0

be sufficiently close to the solution.
Now suppose that f : R → R is a real-valued function that we wish

to minimize by solving f ′(x) = 0. Letting g(x) = f ′(x) and applying the
Newton–Raphson algorithm to g(x) gives the iterative step

xk+1 = xk − f ′(xk)/f ′′(xk).

This is the Newton–Raphson optimization algorithm. Now we extend these
results to functions of several variables.

11.5.2 Functions of Several Variables

The Newton–Raphson algorithm for finding roots of functions g : RJ →
RJ has the iterative step

xk+1 = xk − [J (g)(xk)]−1g(xk),

where J (g)(x) is the Jacobian matrix of first partial derivatives, ∂gm∂xj
(xk),

for g(x) = (g1(x), ..., gJ(x))T .
To minimize a function f : RJ → R, we let g(x) = ∇f(x) and find a

root of g. Then the Newton–Raphson iterative step becomes

xk+1 = xk − [∇2f(xk)]−1∇f(xk), (11.2)

where∇2f(x) = J (g)(x) is the Hessian matrix of second partial derivatives
of f .

The quadratic approximation to f(x) around the point xk is

f(x) ≈ f(xk) + 〈∇f(xk), x− xk〉+
1

2
(x− xk)T∇2f(xk)(x− xk).

The right side of this equation attains its minimum value when

0 = ∇f(xk) +∇2f(xk)(x− xk),

192 A First Course in Optimization

that is, when x = xk+1 as given by Equation (11.2). If f(x) is a quadratic
function, that is,

f(x) = xTQx+ xT b+ c,

for constant invertible matrix Q and constant vectors b and c, then the
Newton–Raphson iteration converges to the answer in one step. Therefore,
if f(x) is close to quadratic, the convergence should be reasonably rapid.
This leads to the notion of self-concordant functions, for which the third
derivative of f(x) is small, relative to the second derivative [164].

From the quadratic approximation

f(xk+1) ≈ f(xk)+〈∇f(xk), xk+1−xk〉+ 1

2
(xk+1−xk)T∇2f(xk)(xk+1−xk),

and the formula for the iterative NR step we find that

f(xk+1)− f(xk) ≈ −1

2
∇f(xk)T [∇2f(xk)]−1∇f(xk).

If the Hessian matrix ∇2f(xk) is always positive-definite, which may not
be the case, then its inverse will also be positive-definite and the NR step
will reduce the value of the objective function f(x). One area of research
in the intersection of numerical linear algebra and optimization focuses on
finding positive-definite approximations of the Hessian matrix [203].

11.6 Approximate Newton–Raphson Methods

To use the NR method to minimize f(x), at each step of the iteration
we need to solve a system of equations involving the Hessian matrix for f .
There are many iterative procedures designed to retain much of the advan-
tages of the NR method, while avoiding the use of the Hessian matrix, or,
indeed, while avoiding the use of the gradient. These methods are discussed
in most texts on numerical methods [164]. We sketch briefly some of these
approaches.

11.6.1 Avoiding the Hessian Matrix

Quasi-Newton methods, designed to avoid having to calculate the Hes-
sian matrix, are often used instead of the Newton–Raphson algorithm. The
iterative step of the quasi-Newton methods is

xk+1 = xk −B−1k ∇f(xk),

Iterative Optimization 193

where the matrix Bk is an approximation of ∇2f(xk) that is easier to
compute.

In the case of g : R→ R, the second derivative of g(x) is approximately

g′′(xk) ≈ g′(xk)− g′(xk−1)

xk − xk−1
.

This suggests that, for the case of functions of several variables, the matrix
Bk should be selected so that

Bk(xk − xk−1) = ∇f(xk)−∇f(xk−1). (11.3)

In addition to satisfying Equation (11.3), the matrix Bk should also be
symmetric and positive-definite. Finally, we should be able to obtain Bk+1

relatively easily from Bk.

11.6.2 The BFGS Method

The Broyden, Fletcher, Goldfarb, and Shanno (BFGS) method uses the
rank-two update formula

Bk+1 = Bk −
(Bks

k)(Bks
k)T

(sk)TBksk
+
yk(yk)T

(yk)T sk
,

with

sk = xk+1 − xk,

and

yk = ∇f(xk+1)−∇f(xk).

11.6.3 The Broyden Class

A general class of update methods, known as the Broyden class, uses
the update formula

Bk+1 = Bk −
(Bks

k)(Bks
k)T

(sk)TBksk
+
yk(yk)T

(yk)T sk
+ φ((sk)TBks

k)uk(uk)T ,

with φ a scalar and

uk =
yk

(yk)T sk
− Bks

k

(sk)TBksk
.

When φ = 0 we get the BFGS method, while the choice of φ = 1 gives the
Davidon, Fletcher, and Powell (DFP) method.

194 A First Course in Optimization

Note that for the updates in the Broyden class, the matrix Bk+1 has
the form

Bk+1 = Bk + ak(ak)T + bk(bk)T + ck(ck)T ,

for certain vectors ak, bk and ck. Therefore, the inverse of Bk+1 can be
obtained easily from the inverse of Bk, with three applications of the
Sherman–Morrison–Woodbury Identity (see Exercise 6.4).

11.6.4 Avoiding the Gradient

Quasi-Newton methods use an approximation of the Hessian matrix
that is simpler to calculate, but still employ the gradient at each step.
For functions g : R → R, the derivative can be approximated by a finite
difference, that is,

g′(xk) ≈ g(xk)− g(xk−1)

xk − xk−1
.

In the case of functions of several variables, the gradient vector can be
approximated by using a finite-difference approximation for each of the
first partial derivatives.

11.7 Derivative-Free Methods

In many important applications, calculating values of the function to
be optimized is expensive and calculating gradients impractical. In such
cases, it is common to use direct-search methods. Generally, these are iter-
ative methods that are easy to program, do not employ derivatives or their
approximations, require relatively few function evaluations, and are useful
even when the measurements are noisy.

11.7.1 Multi-Directional Search Algorithms

Methods such as the multi-directional search algorithms begin with the
values of the function f(x) at J + 1 points, where x is in RJ , and then
use these values to move to a new set of points. These points are chosen
to describe a simplex pattern in RJ , that is, they do not all lie on a single
hyperplane in RJ . For that reason, these methods are sometimes called
simplex methods, although they are unrelated to Dantzig’s method of the
same name. The Nelder–Mead algorithm [165, 143, 156] is one such simplex
algorithm.

Iterative Optimization 195

11.7.2 The Nelder–Mead Algorithm

For simplicity, we follow McKinnon [156] and describe the Nelder–Mead
(NM) algorithm only for the case of J = 2. The NM algorithm begins with
the choice of vertices:

ORDER: Obtain b, s, and w, with

f(b) ≤ f(s) ≤ f(w).

Then take

m =
1

2
(b+ s).

Let the search line be

L(ρ) = m+ ρ(m− w),

and
r = L(1) = 2m− w.

• {if f(r) < f(b)} let e = L(2). If f(e) < f(b) accept e; otherwise
accept r.

• {if f(b) ≤ f(r)} then

– {if f(r) < f(s)} accept r.

– {if f(s) ≤ f(r)}
∗ {if f(r) < f(w)} let c = L(0.5)

· {if f(c) ≤ f(r)} accept c;

· {if f(r) < f(c)} go to SHRINK.

∗ {if f(w) ≤ f(r)} let c = L(−0.5).

· {if f(c) < f(w)} accept c; otherwise go to SHRINK.

Replace w with the accepted point and go to ORDER.
SHRINK: Replace s with 1

2 (s+ b) and w with 1
2 (w + b); go to ORDER.

11.7.3 Comments on the Nelder–Mead Algorithm

Although the Nelder–Mead algorithm is quite popular in many areas of
applications, relatively little of a theoretical nature is known. The interested
reader is directed to the papers [143, 156], as well as to more recent work by
Margaret Wright of NYU. A good treatment of the Nelder–Mead algorithm,
along with a number of other derivative-free techniques, is the new book
by Conn, Scheinberg and Vicente [89].

196 A First Course in Optimization

11.8 Rates of Convergence

In this section we illustrate the concept of rate of convergence [30] by
considering the fixed-point iteration xk+1 = g(xk), for the twice continu-
ously differentiable function g : R→ R. We suppose that g(z) = z and we
are interested in the distance |xk − z|.

11.8.1 Basic Definitions

Definition 11.3 Suppose the sequence {xk} converges to z. If there are
positive constants λ and α such that

lim
k→∞

|xk+1 − z|
|xk − z|α

= λ,

then {xk} is said to converge to z with order α and asymptotic error con-
stant λ. If α = 1, the convergence is said to be linear; if α = 2, the conver-
gence is said to be quadratic.

11.8.2 Illustrating Quadratic Convergence

According to the Extended Mean Value Theorem,

g(x) = g(z) + g′(z)(x− z) +
1

2
g′′(c)(x− z)2,

for some c between x and z. Suppose now that xk → z and, in addition,
g′(z) = 0. Then we have

xk+1 = g(xk) = z +
1

2
g′′(ck)(xk − z)2,

for some ck between xk and z. Therefore,

|xk+1 − z| =
1

2
|g′′(ck)| |xk − z|2,

and the convergence is quadratic, with λ = |g′′(z)|.

11.8.3 Motivating the Newton–Raphson Method

Suppose that we are seeking a root z of the function f : R → R. We
define

g(x) = x− h(x)f(x),

Iterative Optimization 197

for some function h(x) to be determined. Then f(z) = 0 implies that
g(z) = z. In order to have quadratic convergence of the iterative sequence
xk+1 = g(xk), we want g′(z) = 0. From

g′(x) = 1− h′(x)f(x)− h(x)f ′(x),

it follows that we want

h(z) = 1/f ′(z).

Therefore, we choose

h(x) = 1/f ′(x),

so that

g(x) = x− f(x)/f ′(x).

The iteration then takes the form

xk+1 = g(xk) = xk − f(xk)/f ′(xk),

which is the Newton–Raphson iteration.

11.9 Descent Methods

Suppose that g(x) is convex and the function f(x) = g′(x) is L-
Lipschitz. If g(x) is twice differentiable, this would be the case if

0 ≤ g′′(x) ≤ L,

for all x. If γ is in the interval (0, 2
L), then the operator Tx = x − γg′(x)

is an averaged operator; from the KMO Theorem 14.2, we know that the
iterative sequence {T kx0} converges to a minimizer of g(x), whenever a
minimizer exists.

If g(x) is convex and f(x) = g′(x) is L-Lipschitz, then 1
Lg
′(x) is non-

expansive, so that, by Theorem 9.20 1
Lg
′(x) is fne. Then, as we shall see in

Chapter 14, the operator

Tx = x− γg′(x)

is such that, whenever 0 < γ < 2
L , the iterative sequence xk+1 = Txk =

xk − γg′(xk) converges to a minimizer of g(x), whenever minimizers exist.
In the next section we extend these results to functions of several vari-

ables.

198 A First Course in Optimization

11.10 Optimizing Functions of Several Real Variables

Suppose g : RJ → R is differentiable and attains its minimum value. We
want to minimize the function g(x). Solving ∇g(x) = 0 to find the optimal
x = x∗ may not be easy, so we may turn to an iterative algorithm for
finding roots of ∇g(x), or one that minimizes g(x) directly. From Cauchy’s
Inequality, we know that the directional derivative of g(x), at x = a, and
in the direction of the vector unit vector d, satisfies

|g′(a; d)| = |〈∇g(a), d〉| ≤ ‖∇g(a)‖2 ‖d‖2,

and that g′(a; d) attains its most positive value when the direction d is a
positive multiple of ∇g(a). This suggests steepest descent optimization.

Steepest descent iterative optimization makes use of the fact that the
direction of greatest increase of g(x) away from x = xk is in the direction
d = ∇g(xk). Therefore, we select as the next vector in the iterative sequence

xk+1 = xk − γk∇g(xk),

for some γk > 0. Ideally, we would choose γk optimally, so that

g(xk − γk∇g(xk)) ≤ g(xk − γ∇g(xk)), (11.4)

for all γ ≥ 0; that is, we would proceed away from xk, in the direction of
−∇g(xk), stopping just as g(x) begins to increase. Then we call this point
xk+1 and repeat the process.

Lemma 11.1 Suppose that xk+1 is chosen using the optimal value of γk,
as described by Equation (11.4). Then

〈∇g(xk+1),∇g(xk)〉 = 0.

In practice, finding the optimal γk is not a simple matter. Instead, one
can try a few values of α and accept the best of these few, or one can try
to find a constant value γ of the parameter having the property that the
iterative step

xk+1 = xk − γ∇g(xk)

leads to a convergent sequence. It is this latter approach that we shall
consider here.

We denote by T the operator

Tx = x− γ∇g(x).

Then, using ∇g(x∗) = 0, we find that

‖x∗ − xk+1‖2 = ‖Tx∗ − Txk‖2.

Iterative Optimization 199

We would like to know if there are choices for γ that imply convergence of
the iterative sequence. As in the case of functions of a single variable, for
functions g(x) that are convex, the answer is yes.

If g(x) is convex and F (x) = ∇g(x) is L-Lipschitz, then G(x) = 1
L∇g(x)

is firmly nonexpansive. Then, as we shall see in Chapter 14, for γ > 0, the
operator

Tx = x− γ∇g(x)

is such that, whenever 0 < γ < 2
L , the iterative sequence xk+1 = Txk =

xk−γ∇g(xk) converges to a minimizer of g(x), whenever minimizers exist.
For example, the function g(x) = 1

2‖Ax− b‖
2
2 is convex and its gradient

is
f(x) = ∇g(x) = AT (Ax− b).

A steepest descent algorithm for minimizing g(x) then has the iterative
step

xk+1 = xk − γkAT (Axk − b),
where the parameter γk should be selected so that

g(xk+1) < g(xk).

The linear operator that transforms each vector x into ATAx has the prop-
erty that

‖ATAx−ATAy‖2 ≤ λmax‖x− y‖2,
where λmax is the largest eigenvalue of the matrix ATA; this operator is
then L-Lipschitz, for L = λmax. Consequently, the operator that transforms
x into 1

LA
TAx is nonexpansive.

11.11 Projected Gradient-Descent Methods

As we have remarked previously, one of the fundamental problems in
continuous optimization is to find a minimizer of a function over a subset of
RJ . The following propositions will help to motivate the projected gradient-
descent algorithm.

Proposition 11.1 Let f : RJ → R be convex and differentiable and let
C ⊆ RJ be closed, nonempty and convex. Then x ∈ C minimizes f over C
if and only if

〈∇f(x), c− x〉 ≥ 0,

for all c ∈ C.

200 A First Course in Optimization

Proof: Since f is convex, we know from Theorem 9.16 that

f(b)− f(a) ≥ 〈∇f(a), b− a〉 ,

for all a and b. Therefore, if

〈∇f(x), c− x〉 ≥ 0,

for all c ∈ C, then f(c)− f(x) ≥ 0 for all c ∈ C also.
Conversely, suppose that f(c)− f(x) ≥ 0, for all c ∈ C. For each c ∈ C,

let d = c−x
‖c−x‖2 , so that

〈∇f(x), d〉 =
1

‖c− x‖2
〈∇f(x), c− x〉

is the directional derivative of f at x, in the direction of c. Because f(c)−
f(x) ≥ 0, for all c ∈ C, this directional derivative must be nonnegative.

Proposition 11.2 Let f : RJ → R be convex and differentiable and let
C ⊆ RJ be closed, nonempty and convex. Then x ∈ C minimizes f over C
if and only if

x = PC(x− γ∇f(x)),

for all γ > 0.

Proof: By Proposition 4.4, we know that x = PC(x− γ∇f(x)) if and only
if

〈x− (x− γ∇f(x)), c− x〉 ≥ 0,

for all c ∈ C. But this is equivalent to

〈∇f(x), c− x〉 ≥ 0,

for all c ∈ C, which, by the previous proposition, is equivalent to x mini-
mizing the function f over all c ∈ C.

This leads us to the projected gradient-descent algorithm. According to
the previous proposition, we know that x minimizes f over C if and only
if x is a fixed point of the operator

Tx = PC(x− γ∇f(x)).

In the next section we present an elementary proof of the following theorem.

Theorem 11.1 Let f : RJ → R be convex and differentiable, with ∇f
L-Lipschitz. Let C be any closed, convex subset of RJ . For 0 < γ < 1

L , let
T = PC(I − γ∇f). If T has fixed points, then the sequence {xk} given by
xk+1 = Txk converges to a fixed point of T , which is then a minimizer of
f over C.

Iterative Optimization 201

The iterative step is given by

xk+1 = PC(xk − γ∇f(xk)). (11.5)

Any fixed point of the operator T minimizes the function f(x) over x in C.
This theorem is a corollary of the KMO Theorem 14.2 for averaged

operators, which we shall define in Chapter 14. Using the KMO Theorem
it can be shown that convergence holds for 0 < γ < 2

L . The proof given in
the next section employs auxiliary-function methods and avoids using the
non-trivial results that, because the operator 1

L∇f is nonexpansive, it is
firmly nonexpansive (see Theorem 9.20), and that the product of averaged
operators is again averaged (see Proposition 14.1).

11.12 Auxiliary-Function Methods

In this section we introduce the notion of auxiliary-function methods,
a topic we shall consider in more detail in Chapter 15. The problem is to
minimize a function f : X → R, over a subset C ⊆ X, where X is an
arbitrary set. At the kth step of the iteration we minimize a function

Gk(x) = f(x) + gk(x),

to obtain xk. The auxiliary functions gk(x) are selected to enforce the
constraint that x be in C, as in barrier-function methods, or to penalize
violations of that constraint, such as in penalty-function methods.

In AF methods certain restrictions are placed on the auxiliary functions
gk(x) to control the behavior of the sequence {f(xk)}. Even when there are
no constraints, the problem of minimizing a real-valued function may re-
quire iteration; the formalism of AF minimization can be useful in deriving
such iterative algorithms, as well as in proving convergence, as we shall see
in the next section. As originally formulated, barrier- and penalty-function
algorithms are not in the AF class, but can be reformulated as AF algo-
rithms. In AF methods the auxiliary functions satisfy additional properties
that guarantee that the sequence {f(xk)} is nonincreasing.

We can use auxiliary-function (AF) methods to prove Theorem 11.1.
For each k = 1, 2, ... let

Gk(x) = f(x) +
1

2γ
‖x− xk−1‖22 −Df (x, xk−1),

where

Df (x, xk−1) = f(x)− f(xk−1)− 〈∇f(xk−1), x− xk−1〉.

202 A First Course in Optimization

Since f(x) is convex, Df (x, y) ≥ 0 for all x and y and is the Bregman
distance formed from the function f [25].

The auxiliary function

gk(x) =
1

2γ
‖x− xk−1‖22 −Df (x, xk−1)

can be rewritten as

gk(x) = Dh(x, xk−1),

where

h(x) =
1

2γ
‖x‖22 − f(x).

Therefore, gk(x) ≥ 0 whenever h(x) is a convex function.
We know that h(x) is convex if and only if

〈∇h(x)−∇h(y), x− y〉 ≥ 0,

for all x and y. This is equivalent to

1

γ
‖x− y‖22 − 〈∇f(x)−∇f(y), x− y〉 ≥ 0. (11.6)

Since ∇f is L-Lipschitz, the inequality (11.6) holds whenever 0 < γ < 1
L .

Lemma 11.2 The xk that minimizes Gk(x) over x ∈ C is given by Equa-
tion (11.5).

Proof: We know that

〈∇Gk(xk), x− xk〉 ≥ 0,

for all x ∈ C. With

∇Gk(xk) =
1

γ
(xk − xk−1) +∇f(xk−1),

we have
〈xk − (xk−1 − γ∇f(xk−1)), x− xk〉 ≥ 0,

for all x ∈ C. We then conclude that

xk = PC(xk−1 − γ∇f(xk−1)).

Iterative Optimization 203

A relatively simple calculation shows that

Gk(x)−Gk(xk) =
1

2γ
‖x− xk‖22

+
1

γ
〈xk − (xk−1 − γ∇f(xk−1)), x− xk〉. (11.7)

From Equation (11.5) it follows that

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22, (11.8)

for all x ∈ C, so that

Gk(x)−Gk(xk) ≥ 1

2γ
‖x− xk‖22 −Df (x, xk) = gk+1(x).

Now let x̂ minimize f(x) over all x ∈ C. Then

Gk(x̂)−Gk(xk) = f(x̂) + gk(x̂)− f(xk)− gk(xk)

≤ f(x̂) +Gk−1(x̂)−Gk−1(xk−1)− f(xk)− gk(xk),

so that(
Gk−1(x̂)−Gk−1(xk−1)

)
−
(
Gk(x̂)−Gk(xk)

)
≥ f(xk)−f(x̂)+gk(xk) ≥ 0.

Therefore, the sequence {Gk(x̂)−Gk(xk)} is decreasing and the sequences
{gk(xk)} and {f(xk)− f(x̂)} converge to zero.

From

Gk(x̂)−Gk(xk) ≥ 1

2γ
‖x̂− xk‖22,

it follows that the sequence {xk} is bounded. Let {xkn} converge to x∗ ∈ C
with {xkn+1} converging to x∗∗ ∈ C; we then have f(x∗) = f(x∗∗) = f(x̂).

Replacing the generic x̂ with x∗∗, we find that {Gkn+1(x∗∗) −
Gkn+1(xkn+1)} is decreasing. By Equation (11.7), this subsequence con-
verges to zero; therefore, the entire sequence {Gk(x∗∗) − Gk(xk)} con-
verges to zero. From the inequality in (11.8), we conclude that the sequence
{‖x∗∗ − xk‖22} converges to zero, and so {xk} converges to x∗∗. This com-
pletes the proof of Theorem 11.1.

11.13 Feasible-Point Methods

We consider now the problem of minimizing a function f(x) : RJ → R,
subject to the equality constraints Ax = b, where A is an I by J real matrix,

204 A First Course in Optimization

with rank I and I < J . We assume that the gradient ∇f is L-Lipschitz
continuous. The methods we consider here are feasible-point methods, also
called interior-point methods.

11.13.1 The Projected Gradient Algorithm

Let C be the set of all x in RJ such that Ax = b. Let x̂ be an arbitrary
member of C. Then every point x in C can be written as x = w + x̂, for
some w in NS(A), the null space of A. For simplicity, we take for x̂ the
minimum-norm solution, x̂ = AT (AAT)−1b. Then we have

C = NS(A) +AT (AAT)−1b,

and, for every z in RJ , we have

PCz = PNS(A)z +AT (AAT)−1b.

Using

PNS(A)z = z −AT (AAT)−1Az,

we have

PCz = z +AT (AAT)−1(b−Az).

Now the iteration in Equation (11.5) becomes

ck+1 = ck − γPNS(A)∇f(ck);

we use ck instead of xk to remind us that each iterate lies in the set C.
The sequence {ck} converges to a solution for any γ in (0, 1

L), whenever
solutions exist. We call this method the projected gradient algorithm.

In the next subsection we present a somewhat simpler approach.

11.13.2 Reduced Gradient Methods

Let c0 be a feasible point, that is, Ac0 = b. Then c = c0 + p is also
feasible if p is in the null space of A, that is, Ap = 0. Let Z be a J by
J − I matrix whose columns form a basis for the null space of A. We want
p = Zv for some v. The best v will be the one for which the function

φ(v) = f(c0 + Zv)

is minimized. We can apply to the function φ(v) the steepest descent
method, or Newton–Raphson or any other minimization technique.

Iterative Optimization 205

The steepest descent method, applied to φ(v), is called the reduced
steepest descent method [164]. The gradient of φ(v), also called the reduced
gradient, is

∇φ(v) = ZT∇f(c),

where c = c0 + Zv. We choose the matrix Z so that ρ(ZTZ) ≤ 1, so that
the gradient operator ∇φ is L-Lipschitz.

For the reduced gradient algorithm, the iteration in Equation (11.5)
becomes

vk+1 = vk − γ∇φ(vk),

so that the iteration for ck+1 = c0 + Zvk+1 is

ck+1 = ck − γZZT∇f(ck).

The vectors ck are feasible, that is, lie in C, and the sequence {ck} converges
to a solution, whenever solutions exist, for any 0 < γ < 1

L .

11.13.3 The Reduced Newton–Raphson Method

The next method we consider is a modification of the Newton–Raphson
method, in which we begin with a feasible point and each NR step is in
the null space of the matrix A, to maintain the condition Ax = b. The
discussion here is taken from [164].

Once again, our objective is to minimize φ(v). The Newton–Raphson
method, applied to φ(v), is called the reduced Newton–Raphson method.
The Hessian matrix of φ(v), also called the reduced Hessian matrix, is

∇2φ(v) = ZT∇2f(x)Z,

where x = x̂+Zv, so algorithms to minimize φ(v) can be written in terms
of the gradient and Hessian of f itself.

The reduced NR algorithm can then be viewed in terms of the vectors
{vk}, with v0 = 0 and

vk+1 = vk − [∇2φ(vk)]−1∇φ(vk);

the corresponding xk is
xk = x̂+ Zvk.

11.13.4 An Example

Consider the problem of minimizing the function

f(x) =
1

2
x21 −

1

2
x23 + 4x1x2 + 3x1x3 − 2x2x3,

206 A First Course in Optimization

subject to
x1 − x2 − x3 = −1.

Let x̂ = [1, 1, 1]T . Then the matrix A is A = [1,−1,−1] and the vector b is
b = [−1]. Let the matrix Z be

Z =

1 1
1 0
0 1

 .
The reduced gradient at x̂ is then

ZT∇f(x̂) =

[
1 1 0
1 0 1

]8
2
0

 =

[
10
8

]
,

and the reduced Hessian matrix at x̂ is

ZT∇2f(x̂)Z =

[
1 1 0
1 0 1

]1 4 3
4 0 −2
3 −2 −1

1 1
1 0
0 1

 =

[
9 6
6 6

]
.

Then the reduced Newton–Raphson equation yields

v =

[
−2/3
−2/3

]
,

and the reduced Newton–Raphson direction is

p = Zv =

−4/3
−2/3
−2/3

 .
Since the function φ(v) is quadratic, one reduced Newton–Raphson step
suffices to obtain the solution, x∗ = [−1/3, 1/3, 1/3]T .

11.13.5 A Primal-Dual Approach

Once again, the objective is to minimize the function f(x) : RJ → R,
subject to the equality constraints Ax = b. According to the Karush–Kuhn–
Tucker Theorem 10.5, ∇L(x, λ) = 0 at the optimal values of x and λ, where
the Lagrangian L(x, λ) is

L(x, λ) = f(x) + λT (b−Ax).

Finding a zero of the gradient of L(x, λ) means that we have to solve the
equations

∇f(x)−ATλ = 0

Iterative Optimization 207

and
Ax = b.

We define the function G(x, λ) taking values in RJ × RI to be

G(x, λ) = (∇f(x)−ATλ,Ax− b)T .

We then apply the NR method to find a zero of the function G. The Jaco-
bian matrix for G is

JG(x, λ) =

[
∇2f(x) −AT
A 0

]
,

so one step of the NR method is

(xk+1, λk+1)T = (xk, λk)T − JG(xk, λk)−1G(xk, λk).

We can rewrite this as

∇2f(xk)(xk+1 − xk)−AT (λk+1 − λk) = ATλk −∇f(xk),

and

A(xk+1 − xk) = b−Axk. (11.9)

It follows from Equation (11.9) that Axk+1 = b, for k = 0, 1, ... , so that
this primal-dual algorithm is a feasible-point algorithm.

11.14 Quadratic Programming

The quadratic-programming problem (QP) is to minimize a quadratic
function, subject to inequality constraints and, often, the nonnegativity of
the variables. Using the Karush–Kuhn–Tucker Theorem 10.6 for mixed con-
straints and introducing slack variables, this problem can be reformulated
as a linear programming problem and solved by Wolfe’s Algorithm [176], a
variant of the simplex method. In the case of general constrained optimiza-
tion, the Newton–Raphson method for finding a stationary point of the
Lagrangian can be viewed as solving a sequence of quadratic programming
problems. This leads to sequential quadratic programming [164].

11.14.1 The Quadratic-Programming Problem

The primal QP problem is to minimize the quadratic function

f(x) = a+ xT c+
1

2
xTQx,

208 A First Course in Optimization

subject to the constraints

Ax ≤ b,

and xj ≥ 0, for j = 1, ..., J . Here a, b, and c are given, Q is a given J by J
positive-definite matrix with entries Qij , and A is an I by J matrix with
rank I and entries Aij . To allow for some equality constraints, we say that

(Ax)i ≤ bi,

for i = 1, ...,K, and

(Ax)i = bi,

for i = K + 1, ..., I.
We incorporate the nonnegativity constraints xj ≥ 0 by requiring

−xj ≤ 0,

for j = 1, ..., J . Applying the Karush–Kuhn–Tucker Theorem to this prob-
lem, we find that if a regular point x∗ is a solution, then there are vectors
µ∗ and ν∗ such that

(1) µ∗i ≥ 0, for i = 1, ...,K;

(2) ν∗j ≥ 0, for j = 1, ..., J ;

(3) c+Qx∗ +ATµ∗ − v∗ = 0;

(4) µ∗i ((Ax
∗)i − bi) = 0, for i = 1, ..., I;

(5) x∗jν
∗
j = 0, for j = 1, ..., J .

One way to solve this problem is to reformulate it as a linear-
programming problem. To that end, we introduce slack variables xJ+i,
i = 1, ...,K, and write the problem as

J∑
j=1

Aijxj + xJ+i = bi, (11.10)

for i = 1, ...,K,

J∑
j=1

Aijxj = bi, (11.11)

for i = K + 1, ..., I,

J∑
j=1

Qmjxj +

I∑
i=1

Aimµi − νm = −cm, (11.12)

Iterative Optimization 209

for m = 1, ..., J ,

µixJ+i = 0,

for i = 1, ...,K, and

xjνj = 0,

for j = 1, ..., J . The objective now is to formulate the problem as a primal
linear-programming problem in standard form.

The variables xj and νj , for j = 1, ..., J , and µi and xJ+i, for i =
1, ...,K, must be nonnegative; the variables µi are unrestricted, for i =
K + 1, ..., I, so for these variables we write

µi = µ+
i − µ

−
i ,

and require that both µ+
i and µ−i be nonnegative. Finally, we need a linear

functional to minimize.
We rewrite Equation (11.10) as

J∑
j=1

Aijxj + xJ+i + yi = bi, (11.13)

for i = 1, ...,K, Equation (11.11) as

J∑
j=1

Aijxj + yi = bi, (11.14)

for i = K + 1, ..., I, and Equation (11.12) as

J∑
j=1

Qmjxj +

I∑
i=1

Aimµi − νm + yI+m = −cm, (11.15)

for m = 1, ..., J . In order for all the equations to hold, each of the yi must be
zero. The linear programming problem is therefore to minimize the linear
functional

y1 + ...+ yI+J ,

over nonnegative yi, subject to the equality constraints in the equations
(11.13), (11.14), and (11.15). Any solution to the original problem must be
a basic feasible solution to this primal linear-programming problem. Wolfe’s
Algorithm [176] is a modification of the simplex method that guarantees
the complementary slackness conditions; that is, we never have µi and xJ+i
positive basic variables at the same time, nor xj and νj .

210 A First Course in Optimization

11.14.2 An Example

The following example is taken from [176]. Minimize the function

f(x1, x2) = x21 − x1x2 + 2x22 − x1 − x2,

subject to the constraints
x1 − x2 ≥ 3,

and
x1 + x2 = 4.

We introduce the slack variable x3 and then minimize

y1 + y2 + y3 + y4,

subject to yi ≥ 0, for i = 1, ..., 4, and the equality constraints

x1 − x2 − x3 + y1 = 3,

x1 + x2 + y2 = 4,

2x1 − x2 − µ1 + µ+
2 − µ

−
2 − ν1 + y3 = 1,

and
−x1 + 4x2 + µ1 + µ+

2 − µ
−
2 − ν2 + y4 = 1.

This problem is then solved using the simplex algorithm, modified accord-
ing to Wolfe’s Algorithm.

11.14.3 Equality Constraints

We turn now to the particular case of QP in which all the constraints
are equations. The problem is, therefore, to minimize

f(x) = a+ xT c+
1

2
xTQx,

subject to the constraints

Ax = b.

The KKT Theorem then tells us that there is λ∗ so that ∇L(x∗, λ∗) = 0
for the solution vector x∗. Therefore, we have

Qx∗ +ATλ∗ = −c,

and
Ax∗ = b.

Such quadratic programming problems arise in sequential quadratic pro-
gramming.

Iterative Optimization 211

11.14.4 Sequential Quadratic Programming

Consider once again the CP problem of minimizing the convex function
f(x), subject to gi(x) = 0, for i = 1, ..., I. The Lagrangian is

L(x, λ) = f(x) +

I∑
i=1

λigi(x).

We assume that a sensitivity vector λ∗ exists, so that x∗ solves our problem
if and only if (x∗, λ∗) satisfies

∇L(x∗, λ∗) = 0.

The problem can then be formulated as finding a zero of the function

G(x, λ) = ∇L(x, λ),

and the Newton–Raphson iterative algorithm can be applied. Because we
are modifying both x and λ, this is a primal-dual algorithm.

One step of the Newton–Raphson algorithm has the form[
xk+1

λk+1

]
=

[
xk

λk

]
+

[
pk

vk

]
,

where [
∇2
xxL(xk, λk) ∇g(xk)
∇g(xk)T 0

] [
pk

vk

]
=

[
−∇xL(xk, λk)
−g(xk)

]
.

The incremental vector

[
pk

vk

]
obtained by solving this system is also the

solution to the quadratic-programming problem of minimizing the function

1

2
pT∇2

xxL(xk, λk)p+ pT∇xL(xk, λk),

subject to the constraint

∇g(xk)T p+ g(xk) = 0.

Therefore, the Newton–Raphson algorithm for the original minimization
problem can be implemented as a sequence of quadratic programs, each
solved by the methods discussed previously. In practice, variants of this ap-
proach that employ approximations for the first and second partial deriva-
tives are often used.

212 A First Course in Optimization

11.15 Simulated Annealing

In this chapter we have focused on the minimization of convex func-
tions. For such functions, a local minimum is necessarily a global one.
For nonconvex functions, this is not the case. For example, the function
f(x) = x4 − 8x3 + 20x2 − 16.5x + 7 has a local minimum around x = 0.6
and a global minimum around x = 3.5. The descent methods we have dis-
cussed can get caught at a local minimum that is not global, since we insist
on always taking a step that reduces f(x). The simulated annealing algo-
rithm [1, 158], also called the Metropolis algorithm, is sometimes able to
avoid being trapped at a local minimum by permitting an occasional step
that increases f(x). The name comes from the analogy with the physical
problem of lowering the energy of a solid by first raising the temperature,
to bring the particles into a disorganized state, and then gradually reducing
the temperature, so that a more organized state is achieved.

Suppose we have calculated xk. We now generate a random direction
and a small random step length. If the new vector xk + ∆x makes f(x)
smaller, we accept the vector as xk+1. If not, then we accept this vector,
with probability

Prob(accept) = exp
(f(xk)− f(xk + ∆x)

ck

)
,

where ck > 0, known as the temperature, is chosen by the user. As the iter-
ation proceeds, the temperature ck is gradually reduced, making it easier
to accept increases in f(x) early in the process, but harder later. How to
select the temperatures is an art, not a science.

11.16 Exercises

Ex. 11.1 Prove Lemma 11.1.

Ex. 11.2 Apply the Newton–Raphson method to obtain an iterative pro-
cedure for finding

√
a, for any positive a. For which x0 does the method

converge? There are two answers, of course; how does the choice of x0

determine which square root becomes the limit?

Ex. 11.3 Apply the Newton–Raphson method to obtain an iterative proce-
dure for finding a1/3, for any real a. For which x0 does the method converge?

Iterative Optimization 213

Ex. 11.4 Extend the Newton–Raphson method to complex variables. Redo
the previous exercises for the case of complex a. For the complex case, a
has two square roots and three cube roots. How does the choice of x0 affect
the limit? Warning: The case of the cube root is not as simple as it may
appear, and has a close connection to fractals and chaos; see [186].

Ex. 11.5 Use the reduced Newton–Raphson method to minimize the func-
tion 1

2x
TQx, subject to Ax = b, where

Q =

0 −13 −6 −3
−13 23 −9 3
−6 −9 −12 1
−3 3 1 −1

 ,

A =

[
2 1 2 1
1 1 3 −1

]
,

and

b =

[
3
2

]
.

Start with

x0 =

1
1
0
0

 .

Ex. 11.6 Use the reduced steepest descent method with an exact line search
to solve the problem in the previous exercise.

This page intentionally left blankThis page intentionally left blank

Chapter 12

Solving Systems of Linear
Equations

12.1 Chapter Summary . 216
12.2 Arbitrary Systems of Linear Equations . 216

12.2.1 Under-Determined Systems of Linear Equations 216
12.2.2 Over-Determined Systems of Linear Equations 217
12.2.3 Landweber’s Method . 218
12.2.4 The Projected Landweber Algorithm 218
12.2.5 The Split-Feasibility Problem . 219
12.2.6 An Extension of the CQ Algorithm . 221
12.2.7 The Algebraic Reconstruction Technique 221
12.2.8 Double ART . 222

12.3 Regularization . 223
12.3.1 Norm-Constrained Least-Squares . 223
12.3.2 Regularizing Landweber’s Algorithm . 223
12.3.3 Regularizing the ART . 224

12.4 Nonnegative Systems of Linear Equations . 224
12.4.1 The Multiplicative ART . 225
12.4.2 MART I . 225
12.4.3 MART II . 226
12.4.4 The Simultaneous MART . 226
12.4.5 The EMML Iteration . 226
12.4.6 Alternating Minimization . 227
12.4.7 The Row-Action Variant of EMML . 227
12.4.8 EMART I . 228
12.4.9 EMART II . 228

12.5 Regularized SMART and EMML . 229
12.5.1 Regularized SMART . 229
12.5.2 Regularized EMML . 229

12.6 Block-Iterative Methods . 230
12.7 Exercises . 230

215

216 A First Course in Optimization

12.1 Chapter Summary

Optimization plays an important role in solving systems of linear equa-
tions. In many applications the linear system is under-determined, meaning
that there are multiple, indeed, infinitely many, solutions to the system. It
is natural, then, to seek a solution that is optimal, in some sense. When
the system involves measured data, as is often the case, there may be no
exact solution, or an exact solution to the system may be too noisy. Then
an approximate solution, or a solution to a related regularized system is
sought. In this chapter we discuss briefly both of these situations, focusing
on iterative algorithms that have been designed for such problems. For a
more in-depth analysis of these problems see [59].

12.2 Arbitrary Systems of Linear Equations

We begin by considering systems of the form Ax = b, where A is a real
M by N matrix, b a real M by 1 vector, and x is the N by 1 solution
vector being sought. If the system has solutions, if there are no additional
constraints being imposed on x, and if M and N are not too large, standard
noniterative methods, such as Gauss elimination, can be used to find a
solution. In all other cases, iterative methods are usually needed.

12.2.1 Under-Determined Systems of Linear Equations

Suppose that Ax = b is a consistent linear system of M equations in
N unknowns, where M < N . Then there are infinitely many solutions.
A standard procedure in such cases is to find that solution x having the
smallest two-norm

||x||2 =

√√√√ N∑
n=1

|xn|2.

As we shall see shortly, the minimum two-norm solution of Ax = b is a
vector of the form x = AT z, where AT denotes the transpose of the matrix
A. Then Ax = b becomes AAT z = b. Typically, (AAT)−1 will exist, and we
get z = (AAT)−1b, from which it follows that the minimum norm solution
is x = AT (AAT)−1b. When M and N are not too large, forming the matrix
AAT and solving for z is not prohibitively expensive and time-consuming.
However, in image processing the vector x is often a vectorization of a two-

Solving Systems of Linear Equations 217

dimensional (or even three-dimensional) image and M and N can be on
the order of tens of thousands or more. The ART algorithm gives us a fast
method for finding the minimum norm solution without computing AAT .

We begin by describing the minimum two-norm solution of a consistent
system Ax = b.

Definition 12.1 The null space of an M by N matrix A is the subspace
of RN consisting of all w such that Aw = 0.

Theorem 12.1 The minimum two-norm solution of Ax = b has the form
x = AT z for some z in RM .

Proof: If Ax = b then A(x + w) = b for all w in the null space of A. If
x = AT z and w is in the null space of A, then

||x+ w||22 = ||AT z + w||22 = (AT z + w)T (AT z + w)

= (AT z)T (AT z) + (AT z)Tw + wT (AT z) + wTw

= ||AT z||22 + (AT z)Tw + wT (AT z) + ||w||22
= ||AT z||22 + ||w||22,

since
wT (AT z) = (Aw)T z = 0T z = 0

and
(AT z)Tw = zTAw = zT 0 = 0.

Therefore, ||x+ w||2 = ||AT z + w||2 > ||AT z||2 = ||x||2 unless w = 0. This
completes the proof.

12.2.2 Over-Determined Systems of Linear Equations

When the system Ax = b has no solutions, we can look for approximate
solutions. For example, we can calculate a vector x for which the function

f(x) =
1

2
‖Ax− b‖22

is minimized; such a vector is called a least-squares solution. Setting the
gradient equal to zero, we obtain

0 = ∇f(x) = AT (Ax− b),

so that
x = (ATA)−1AT b,

provided that ATA is invertible, which is usually the case.

218 A First Course in Optimization

12.2.3 Landweber’s Method

Landweber’s iterative method [144] has the following iterative step: For
k = 0, 1, ... let

xk+1 = xk + γAT (b−Axk),

where AT denotes the transpose of the matrix A. If the parameter γ is
chosen to lie within the interval (0, 2/L), where L is the largest eigenvalue
of the matrix ATA, then the sequence {xk} converges to the solution of
Ax = b for which ‖x− x0‖2 is minimized, provided that solutions exist. If
not, the sequence {xk} converges to a least-squares solution: The limit is
the minimizer of the function ‖b−Ax‖2 for which ‖x− x0‖2 is minimized.

A least-squares solution of Ax = b is an exact solution of the system

ATAx = AT b.

One advantage to using Landweber’s algorithm is that we do not have to
use the matrix ATA, which can be time-consuming to calculate when M
and N are large. As discussed in [59], reasonable estimates of L can also
be obtained without knowing ATA.

12.2.4 The Projected Landweber Algorithm

Suppose that C is a nonempty, closed and convex subset of RN , and
we want to find an exact or approximate solution of Ax = b within C. The
projected Landweber algorithm (PLW) has the following iterative step:

xk+1 = PC

(
xk + γAT (b−Axk)

)
,

where PCx denotes the orthogonal projection of x onto C.

Theorem 12.2 If the parameter γ is chosen to lie within the interval
(0, 2/L), the sequence {xk} converges to an x in C that solves Ax = b,
provided that solutions exist in C. If not, the sequence {xk} converges to
a minimizer, over x in C, of the function ‖b − Ax‖, if such a minimizer
exists.

Proof: Suppose that z ∈ C minimizes f(x) = 1
2‖b−Ax‖

2, over all x ∈ C.
Then we have

z = PC(z − γAT (Az − b)).

Therefore,

‖z − xk+1‖2 = ‖PC(z − γAT (Az − b))− PC(xk − γAT (Axk − b))‖2

≤ ‖(z−γAT (Az−b))−(xk−γAT (Axk−b))‖2 = ‖z−xk+γAT (Axk−Az)‖2

Solving Systems of Linear Equations 219

= ‖z − xk‖2 + 2γ〈z − xk, AT (Axk −Az)〉+ γ2‖AT (Axk −Az)‖2

≤ ‖z − xk‖2 − 2γ‖Az −Axk‖2 + γ2‖AT ‖2‖Az −Axk‖2

= ‖z − xk‖2 − (2γ − γ2L)‖Az −Axk‖2.

So we have

‖z − xk‖2 − ‖z − xk+1‖2 ≥ (2γ − γ2L)‖Az −Axk‖2 ≥ 0.

Consequently, we have that the sequence {‖z − xk‖} is decreasing, the
sequence {‖Az − Axk‖} converges to zero, the sequence {xk} is bounded,
and a subsequence converges to some x∗ ∈ C, with Ax∗ = Az. It follows
that {‖x∗ − xk‖} converges to zero, so that {xk} converges to x∗, which is
a minimizer of f(x) over x ∈ C.

12.2.5 The Split-Feasibility Problem

Suppose now that C and Q are nonempty, closed and convex subsets of
RN and RM , respectively, and we want x in C for which Ax is in Q; this is
the split-feasibility problem (SFP) [71]. The CQ algorithm [50, 51] has the
following iterative step:

xk+1 = PC

(
xk − γAT (I − PQ)Axk

)
.

For γ in the interval (0, 2/L), the sequence {xk} generated by the CQ
algorithm converges to a solution of the SFP, when solutions exist. If no
solution exists, it converges to a minimizer, over x in C, of the function

f(x) =
1

2
‖PQAx−Ax‖22, (12.1)

provided such minimizers exist. Both the Landweber and projected
Landweber methods are special cases of the CQ algorithm.

The following theorem describes the gradient of the function f(x) in
Equation (12.1).

Theorem 12.3 Let f(x) = 1
2‖PQAx − Ax‖22 and t ∈ ∂f(x). Then t =

AT (I − PQ)Ax, so that t = ∇f(x).

Proof: First, we show that t = AT z∗ for some z∗. Let s = x + w, where
w is an arbitrary member of the null space of A. Then As = Ax and
f(s) = f(x). From

0 = f(s)− f(x) ≥ 〈t, s− x〉 = 〈t, w〉,

it follows that
〈t, w〉 = 0,

220 A First Course in Optimization

for all w in the null space of A, from which we conclude that t is in the
range of AT . Therefore, we can write t = AT z∗.

Let u be chosen so that ‖A(u− x)‖ = 1, and let ε > 0. We then have

‖PQAx−A(x+ ε(u− x))‖2 − ‖PQAx−Ax‖2 ≥

‖PQ(Ax+ ε(u− x))−A(x+ ε(u− x))‖2 − ‖PQAx−Ax‖2 ≥ 2ε〈t, u− x〉.

Therefore, since

‖PQAx−A(x+ε(u−x))‖2 = ‖PQAx−Ax‖2−2ε〈PQAx−Ax,A(u−x)〉+ε2,

it follows that

ε

2
≥ 〈PQAx−Ax+ z∗, A(u− x)〉 = −〈AT (I − PQ)Ax− t, u− x〉.

Since ε is arbitrary, it follows that

〈AT (I − PQ)Ax− t, u− x〉 ≥ 0,

for all appropriate u. But this is also true if we replace u with v = 2x− u.
Consequently, we have

〈AT (I − PQ)Ax− t, u− x〉 = 0.

Now we select

u− x = (AT (I − PQ)Ax− t)/‖AAT (I − PQ)Ax−At‖,

from which it follows that

AT (I − PQ)Ax = t.

Corollary 12.1 The gradient of the function

f(x) =
1

2
‖x− PCx‖2

is ∇f(x) = x− PCx, and the gradient of the function

g(x) =
1

2

(
‖x‖22 − ‖x− PCx‖22

)
is ∇g(x) = PCx.

Extensions of the CQ algorithm have been applied recently to problems
in intensity-modulated radiation therapy [69, 73].

Solving Systems of Linear Equations 221

12.2.6 An Extension of the CQ Algorithm

Let C ∈ RN and Q ∈ RM be closed, nonempty convex sets, and let A
and B be J by N and J by M real matrices, respectively. The problem is
to find x ∈ C and y ∈ Q such that Ax = By. When there are no such x
and y, we consider the problem of minimizing

f(x, y) =
1

2
‖Ax−By‖22,

over x ∈ C and y ∈ Q.
Let K = C ×Q in RN × RM . Define

G =
[
A −B

]
,

w =

[
x
y

]
,

so that

GTG =

[
ATA −ATB
−BTA BTB

]
.

The original problem can now be reformulated as finding w ∈ K with
Gw = 0. We shall consider the more general problem of minimizing the
function ‖Gw‖ over w ∈ K. The projected Landweber algorithm (PLW)
solves this more general problem.

The iterative step of the PLW algorithm is the following:

wk+1 = PK(wk − γGT (Gwk)).

Expressing this in terms of x and y, we obtain

xk+1 = PC(xk − γAT (Axk −Byk));

and

yk+1 = PQ(yk + γBT (Axk −Byk)).

The PLW converges, in this case, to a minimizer of ‖Gw‖ over w ∈ K,
whenever such minimizers exist, for 0 < γ < 2

ρ(GTG)
.

12.2.7 The Algebraic Reconstruction Technique

The algorithms presented previously in this chapter are simultaneous
methods, meaning that all the equations of the system are used at each
step of the iteration. Such methods tend to converge slowly, which presents
a major problem for large systems. The algebraic reconstruction technique
(ART) is a row-action method, meaning that only a single equation is used

222 A First Course in Optimization

at each step of the iteration. The ART has the following iterative step: For
k = 0, 1, ... and m = k(modM) + 1, let

xk+1
n = xkn +Amn(bm − (Axk)m)/

N∑
j=1

|Amj |2.

We can describe the ART geometrically as follows: Once we have xk and
m, the vector xk+1 is the orthogonal projection of xk onto the hyperplane
Hm given by

Hm = {x|(Ax)m = bm}.

The Landweber algorithm can be similarly described: The vector xk+1 is a
weighted sum of the orthogonal projections of xk onto each of the hyper-
planes Hm, for all m.

In the consistent case, when the system Ax = b has solutions, the ART
converges to the solution for which ‖x−x0‖ is minimized. Unlike the simul-
taneous methods, when no solution exists, the ART sequence {xk} does not
converge to a single vector, but subsequences do converge to members of a
limit cycle consisting of (typically) M distinct vectors. Generally speaking,
the ART will converge, in the consistent case, faster than the Landweber
method, especially if the equations are selected in a random order [127].

12.2.8 Double ART

Because the ART is significantly faster to converge than the Landweber
method in the consistent case, we would like to be able to use the ART in
the inconsistent case, as well, to get a least-squares solution. To avoid the
limit-cycle behavior of ART in this case, we can use double ART (DART).

We know from basic linear algebra that the vector b can be written as

b = Ax̂+ ŵ,

where x̂minimizes the function ‖b−Ax‖2 and w = ŵ minimizes the function
‖b − w‖2, subject to ATw = 0. Said another way, Ax̂ is the orthogonal
projection of b onto the range of A and ŵ is the orthogonal projection of b
onto the null space of AT .

In DART we apply the ART algorithm twice, first to the consistent
linear system ATw = 0, with w0 = b, so that the limit is ŵ, and then to
the consistent system Ax = b− ŵ. The result is the minimizer of ‖b−Ax‖
for which ‖x− x0‖ is minimized.

Solving Systems of Linear Equations 223

12.3 Regularization

In many applications in which systems of linear equations must be
solved, the entries of the vector b are measured data and Ax = b is a
model that attempts to describe, in a somewhat simplified way, how b de-
pends on the unknown vector x. The statistical noise in the measured data
introduces one type of error, while the approximate nature of the model
itself introduces another. Because the model is simplified, but the data b is
noisy, an exact solution x itself usually ends up noisy. Also, it is common
for the system to be ill-conditioned, that is, for small changes in b to lead
to large changes in the exact solution x. This happens when the ratio of
the largest to smallest eigenvalues of the matrix ATA is large. In such cases
even a minimum-norm solution of Ax = b can have a large norm. Conse-
quently, we often do not want an exact solution of Ax = b, even when such
solutions exist. Instead, we regularize the problem.

12.3.1 Norm-Constrained Least-Squares

One way to regularize the problem is to minimize not ‖b − Ax‖2, but,
say,

f(x) = ‖b−Ax‖22 + ε2‖x‖22, (12.2)

for some small ε > 0. Now we are still trying to make ‖b−Ax‖2 small, but
managing to keep ‖x‖2 from becoming too large in the process. This leads
to a norm-constrained least-squares solution.

The minimizer of f(x) is the unique solution x̂ε of the system

(ATA+ ε2I)x = AT b.

When M and N are large, we need ways to solve this system without
having to deal with the matrix ATA + ε2I. Landweber’s method allowed
us to avoid ATA in calculating the least-squares solution. Is there a similar
method to use now? Yes, there is.

12.3.2 Regularizing Landweber’s Algorithm

Our goal is to minimize the function f(x) in Equation (12.2). Notice
that this is equivalent to minimizing the function

F (x) = ||Bx− c||22,

for

B =

[
A
εI

]
,

224 A First Course in Optimization

and

c =

[
b
0

]
,

where 0 denotes a column vector with all entries equal to zero. The Landwe-
ber iteration for the problem Bx = c is

xk+1 = xk + αBT (c−Bxk), (12.3)

for 0 < α < 2/ρ(BTB), where ρ(BTB) is the largest eigenvalue, or the
spectral radius, of BTB. Equation (12.3) can be written as

xk+1 = (1− αε2)xk + αAT (b−Axk).

12.3.3 Regularizing the ART

We would like to get the regularized solution x̂ε by taking advantage of
the faster convergence of the ART. Fortunately, there are ways to find x̂ε,
using only the matrix A and the ART algorithm. We discuss two methods
for using ART to obtain regularized solutions of Ax = b. The first one is
presented in [53], while the second one is due to Eggermont, Herman, and
Lent [105].

In our first method we use ART to solve the system of equations given
in matrix form by [

AT εI
] [u
v

]
= 0. (12.4)

We begin with u0 = b and v0 = 0. Then, the lower component of the limit
vector is v∞ = −εx̂ε, while the upper limit is u∞ = b−Ax̂ε.

The method of Eggermont et al. is similar. In their method we use ART
to solve the system of equations given in matrix form by[

A εI
] [x
v

]
= b. (12.5)

We begin at x0 = 0 and v0 = 0. Then, the limit vector has for its upper
component x∞ = x̂ε, and εv∞ = b−Ax̂ε.

12.4 Nonnegative Systems of Linear Equations

We turn now to nonnegative systems of linear equations, which we shall
denote by y = Px, with the understanding that P is an I by J matrix with

Solving Systems of Linear Equations 225

nonnegative entries Pij , such that, for each j, the column sum

sj =

I∑
i=1

Pij

is positive, y is an I by 1 vector with positive entries yi, and we seek a
solution x with nonnegative entries xj . We say that the system is consis-
tent whenever such nonnegative solutions exist. Denote by X the set of all
nonnegative x for which the vector Px has only positive entries. In what
follows, all vectors x will lie in X and the initial vector x0 will always be
positive.

12.4.1 The Multiplicative ART

Both the algebraic reconstruction technique (ART) and the multiplica-
tive algebraic reconstruction technique (MART) were introduced by Gor-
don, Bender and Herman [121] as two iterative methods for discrete image
reconstruction in transmission tomography. It was noticed somewhat later
that the ART is a special case of Kaczmarz’s algorithm [134].

Both methods are what are called row-action methods, meaning that
each step of the iteration uses only a single equation from the system. The
MART is limited to nonnegative systems for which nonnegative solutions
are sought. In the under-determined case, both algorithms find the solution
closest to the starting vector, in the two-norm or weighted two-norm sense
for ART, and in the cross-entropy sense for MART, so both algorithms
can be viewed as solving optimization problems. We consider two different
versions of the MART.

12.4.2 MART I

The iterative step of the first version of MART, which we call MART
I, is the following: For k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

(yi
(Pxk)i

)Pij/mi

,

for j = 1, ..., J , where the parameter mi is defined to be

mi = max{Pij |j = 1, ..., J}.

The MART I algorithm converges, in the consistent case, to the nonnegative
solution for which the KL distance KL(x, x0) is minimized.

226 A First Course in Optimization

12.4.3 MART II

The iterative step of the second version of MART, which we shall call
MART II, is the following: For k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj

(yi
(Pxk)i

)Pij/sjni

,

for j = 1, ..., J , where the parameter ni is defined to be

ni = max{Pijs−1j |j = 1, ..., J}.

The MART II algorithm converges, in the consistent case, to the nonneg-
ative solution for which the KL distance

J∑
j=1

sjKL(xj , x
0
j)

is minimized. Just as Landweber’s method is a simultaneous cousin of the
row-action ART, there is a simultaneous cousin of the MART, called, not
surprisingly, the simultaneous MART (SMART).

12.4.4 The Simultaneous MART

The SMART minimizes the cross-entropy, or Kullback–Leibler distance,
f(x) = KL(Px, y), over nonnegative vectors x [93, 81, 185, 39].

Having found the vector xk, the next vector in the SMART sequence is
xk+1, with entries given by

xk+1
j = xkj exp

(
s−1j

I∑
i=1

Pij log
(yi

(Pxk)i

))
.

As with MART II, when there are nonnegative solutions of y = Px, the
SMART converges to the solution for which the KL distance

J∑
j=1

sjKL(xj , x
0
j)

is minimized.

12.4.5 The EMML Iteration

The expectation maximization maximum likelihood algorithm (EMML)
minimizes the function f(x) = KL(y, Px), over nonnegative vectors x [187,

Solving Systems of Linear Equations 227

145, 200, 146, 39]. Having found the vector xk, the next vector in the EMML
sequence is xk+1, with entries given by

xk+1
j = xkj s

−1
j

(
I∑
i=1

Pij

(yi
(Pxk)i

))
.

The iterative step of the EMML is closely related to that of the SMART,
except that the exponentiation and logarithm are missing. When there
are nonnegative solutions of the system y = Px, the EMML converges to
a nonnegative solution, but no further information about this solution is
known. Both the SMART and the EMML are slow to converge, particularly
when the system is large.

12.4.6 Alternating Minimization

In [39] the SMART and the EMML were derived using the following
alternating minimization approach.

For each x ∈ X , let r(x) and q(x) be the I by J arrays with entries

r(x)ij = xjPijyi/(Px)i,

and

q(x)ij = xjPij .

In the iterative step of the SMART we get xk+1 by minimizing the function

KL(q(x), r(xk)) =

I∑
i=1

J∑
j=1

KL(q(x)ij , r(x
k)ij)

over x ≥ 0. Note that KL(Px, y) = KL(q(x), r(x)). Similarly, the iterative
step of the EMML is to minimize the function KL(r(xk), q(x)) to get x =
xk+1. Note that KL(y, Px) = KL(r(x), q(x)).

12.4.7 The Row-Action Variant of EMML

When there are nonnegative solutions of y = Px, the MART converges
faster than the SMART, and to the same solution. The SMART involves
exponentiation and a logarithm, and the MART a non-integral power, both
of which complicate their calculation. The EMML is considerably simpler
in this respect, but, like SMART, converges slowly. We would like to have a
row-action variant of the EMML that converges faster than the EMML in
the consistent case, but is easier to calculate than the MART. The EMART
is such an algorithm. As with the MART, we distinguish two versions,

228 A First Course in Optimization

EMART I and EMART II. When the system y = Px has nonnegative so-
lutions, both EMART I and EMART II converge to nonnegative solutions,
but nothing further is known about these solutions. To motivate these al-
gorithms, we rewrite the MART algorithms.

The iterative step of MART I can be written as follows: For k = 0, 1, ...,
and i = k(mod I) + 1, let

xk+1
j = xkj exp

((Pij
mi

)
log
(yi

(Pxk)i

))
,

or, equivalently, as

log xk+1
j =

(
1− Pij

mi

)
log xkj +

(Pij
mi

)
log
(
xkj

yi
(Pxk)i

)
. (12.6)

Similarly, the iterative step of MART II can be written as follows: For
k = 0, 1, ..., and i = k(mod I) + 1, let

xk+1
j = xkj exp

((Pij
sjni

)
log
(yi

(Pxk)i

))
,

or, equivalently, as

log xk+1
j =

(
1− Pij

sjni

)
log xkj +

(Pij
sjni

)
log
(
xkj

yi
(Pxk)i

)
. (12.7)

We obtain the EMART I and EMART II simply by removing the logarithms
in Equations (12.6) and (12.7), respectively.

12.4.8 EMART I

The iterative step of EMART I is as follows: For k = 0, 1, ..., and i =
k(mod I) + 1, let

xk+1
j =

(
1− Pij

mi

)
xkj +

(Pij
mi

)(
xkj

yi
(Pxk)i

)
.

12.4.9 EMART II

The iterative step of EMART II is as follows:

xk+1
j =

(
1− Pij

sjni

)
xkj +

(Pij
sjni

)(
xkj

yi
(Pxk)i

)
.

Solving Systems of Linear Equations 229

12.5 Regularized SMART and EMML

As with the Landweber algorithm, there are situations that arise in
practice in which, because of noisy measurements, the exact or approximate
solutions of y = Px provided by the SMART and EMML algorithms are
not suitable. In such cases, we need to regularize the SMART and the
EMML, which is usually done by including a penalty function.

12.5.1 Regularized SMART

As we have seen, the iterative step of the SMART is obtained by min-
imizing the function KL(q(x), r(xk)) over nonnegative x, and the limit of
the SMART minimizes KL(Px, y). We can regularize by minimizing

KL(Px, y) +KL(x, p),

where the vector p with positive entries pj is a prior estimate of the solution.
To obtain xk+1 from xk, we minimize

KL(q(x), r(xk)) +

J∑
j=1

δjKL(xj , pj).

There are many penalty functions we could use here, but the one we have
chosen permits the minimizing xk+1 to be obtained in closed form.

The iterative step of the regularized SMART is as follows:

log xk+1
j =

δj
δj + sj

log pj +
1

δj + sj
xkj

I∑
i=1

Pij log
(yi

(Pxk)i

)
.

12.5.2 Regularized EMML

As we have seen, the iterative step of the EMML is obtained by min-
imizing the function KL(r(xk), q(x)) over nonnegative x, and the limit of
the EMML minimizes KL(y, Px). We can regularize by minimizing

KL(y, Px) +KL(p, x).

To obtain xk+1 from xk, we minimize

KL(r(xk), q(x)) +

J∑
j=1

δjKL(pj , xj).

230 A First Course in Optimization

Again, there are many penalty functions we could use here, but the one we
have chosen permits the minimizing xk+1 to be obtained in closed form.

The iterative step of the regularized EMML is as follows:

xk+1
j =

δj
δj + sj

pj +
1

δj + sj
xkj

I∑
i=1

Pij

(yi
(Pxk)i

)
.

12.6 Block-Iterative Methods

The algorithms we have considered in this chapter are either simultane-
ous algorithms or row-action ones. There are also block-iterative variants of
MART and ART, in which some, but not all, equations of the system are
used at each step. The subsets of equations used at a single step are called
blocks. Generally speaking, the smaller the blocks, the faster the conver-
gence, in the consistent case. On the other hand, it may be inconvenient,
given the architecture of the computer, to deal with only a single equation
at each step. By using blocks, we can achieve a compromise between speed
of convergence and compatibility with the architecture of the computer.
These block-iterative methods are discussed in detail in [59].

12.7 Exercises

Ex. 12.1 Show that the two algorithms associated with Equations (12.4)
and (12.5), respectively, do actually perform as claimed.

Chapter 13

Conjugate-Direction Methods

13.1 Chapter Summary . 231
13.2 Iterative Minimization . 231
13.3 Quadratic Optimization . 232
13.4 Conjugate Bases for RJ . 235

13.4.1 Conjugate Directions . 235
13.4.2 The Gram–Schmidt Method . 236

13.5 The Conjugate Gradient Method . 237
13.5.1 The Main Idea . 237
13.5.2 A Recursive Formula . 238

13.6 Krylov Subspaces . 239
13.7 Extensions of the CGM . 239
13.8 Exercises . 239

13.1 Chapter Summary

Finding the least-squares solution of a possibly inconsistent system of
linear equations Ax = b is equivalent to minimizing the quadratic function
f(x) = 1

2 ||Ax − b||
2
2 and so can be viewed within the framework of opti-

mization. Iterative optimization methods can then be used to provide, or
at least suggest, algorithms for obtaining the least-squares solution. The
conjugate gradient method is one such method. Proofs for the lemmas in
this chapter are exercises for the reader.

13.2 Iterative Minimization

Iterative methods for minimizing a real-valued function f(x) over the
vector variable x usually take the following form: Having obtained xk−1,
a new direction vector dk is selected, an appropriate scalar αk > 0 is

231

232 A First Course in Optimization

determined and the next member of the iterative sequence is given by

xk = xk−1 + αkd
k. (13.1)

Ideally, one would choose the αk to be the value of α for which the function
f(xk−1 +αdk) is minimized. It is assumed that the direction dk is a descent
direction; that is, for small positive α the function f(xk−1 +αdk) is strictly
decreasing. Finding the optimal value of α at each step of the iteration is
difficult, if not impossible, in most cases, and approximate methods, using
line searches, are commonly used.

Lemma 13.1 When xk is constructed using the optimal α, we have

∇f(xk) · dk = 0. (13.2)

Proof: Differentiate the function f(xk−1+αdk) with respect to the variable
α.

Since the gradient ∇f(xk) is orthogonal to the previous direction vector
dk and also because −∇f(x) is the direction of greatest decrease of f(x),
the choice of dk+1 = −∇f(xk) as the next direction vector is a reasonable
one. With this choice we obtain Cauchy’s steepest descent method [151]:

xk+1 = xk − αk+1∇f(xk).

The steepest descent method need not converge in general and even when
it does, it can do so slowly, suggesting that there may be better choices
for the direction vectors. For example, the Newton–Raphson method [164]
employs the following iteration:

xk+1 = xk −∇2f(xk)−1∇f(xk),

where ∇2f(x) is the Hessian matrix for f(x) at x. To investigate further
the issues associated with the selection of the direction vectors, we consider
the more tractable special case of quadratic optimization.

13.3 Quadratic Optimization

Let A be an arbitrary real I by J matrix. The linear system of equations
Ax = b need not have any solutions, and we may wish to find a least-squares
solution x = x̂ that minimizes

f(x) =
1

2
||b−Ax||22. (13.3)

Conjugate-Direction Methods 233

The vector b can be written

b = Ax̂+ ŵ,

where AT ŵ = 0 and a least squares solution is an exact solution of the
linear system Qx = c, with Q = ATA and c = AT b. We shall assume
that Q is invertible and there is a unique least squares solution; this is the
typical case.

We consider now the iterative scheme described by Equation (13.1) for
f(x) as in Equation (13.3). For now, the direction vectors dk are arbitrary.
For this f(x) the gradient becomes

∇f(x) = Qx− c.

The optimal αk for the iteration can be obtained in closed form.

Lemma 13.2 The optimal αk is

αk =
rk · dk

dk ·Qdk
, (13.4)

where rk = c−Qxk−1.

Lemma 13.3 Let ||x||2Q = x · Qx denote the square of the Q-norm of x.
Then

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0

for any direction vectors dk.

If the sequence of direction vectors {dk} is completely general, the iter-
ative sequence need not converge. However, if the set of direction vectors
is finite and spans RJ and we employ them cyclically, convergence follows.

Theorem 13.1 Let {d1, ..., dJ} be any basis for RJ . Let αk be chosen ac-
cording to Equation (13.4). Then, for k = 1, 2, ..., j = k(mod J), and any
x0, the sequence defined by

xk = xk−1 + αkd
j

converges to the least squares solution.

Proof: The sequence {||x̂−xk||2Q} is decreasing and, therefore, the sequence

{(rk · dk)2/dk · Qdk must converge to zero. Therefore, the vectors xk are
bounded, and for each j = 1, ..., J , the subsequences {xmJ+j , m = 0, 1, ...}
have cluster points, say x∗,j with

x∗,j = x∗,j−1 +
(c−Qx∗,j−1) · dj

dj ·Qdj
dj .

234 A First Course in Optimization

Since
rmJ+j · dj → 0,

it follows that, for each j = 1, ..., J ,

(c−Qx∗,j) · dj = 0.

Therefore,
x∗,1 = ... = x∗,J = x∗

with Qx∗ = c. Consequently, x∗ is the least squares solution and the se-
quence {||x∗ − xk||Q} is decreasing. But a subsequence converges to zero;
therefore, {||x∗ − xk||Q} → 0. This completes the proof.

There is an interesting corollary to this theorem that pertains to a
modified version of the ART algorithm. For k = 0, 1, ... and i = k(modM)+
1 and with the rows of A normalized to have length one, the ART iterative
step is

xk+1 = xk + (bi − (Axk)i)a
i,

where ai is the ith column of AT . When Ax = b has no solutions, the
ART algorithm does not converge to the least-squares solution; rather,
it exhibits subsequential convergence to a limit cycle. However, using the
previous theorem, we can show that the following modification of the ART,
which we shall call the least squares ART (LS-ART), converges to the least-
squares solution for every x0:

xk+1 = xk +
rk+1 · ai

ai ·Qai
ai.

In the quadratic case the steepest descent iteration has the form

xk = xk−1 +
rk · rk

rk ·Qrk
rk.

We have the following result.

Theorem 13.2 The steepest descent method converges to the least-squares
solution.

Proof: As in the proof of the previous theorem, we have

||x̂− xk−1||2Q − ||x̂− xk||2Q = (rk · dk)2/dk ·Qdk ≥ 0,

where now the direction vectors are dk = rk. So, the sequence {||x̂−xk||2Q}
is decreasing, and therefore the sequence {(rk ·rk)2/rk ·Qrk} must converge
to zero. The sequence {xk} is bounded; let x∗ be a cluster point. It follows
that c−Qx∗ = 0, so that x∗ is the least-squares solution x̂. The rest of the
proof follows as in the proof of the previous theorem.

Conjugate-Direction Methods 235

13.4 Conjugate Bases for RJ

If the set {v1, ..., vJ} is a basis for RJ , then any vector x in RJ can be
expressed as a linear combination of the basis vectors; that is, there are
real numbers a1, ..., aJ for which

x = a1v
1 + a2v

2 + ...+ aJv
J .

For each x the coefficients aj are unique. To determine the aj we write

x · vm = a1v
1 · vm + a2v

2 · vm + ...+ aJv
J · vm,

for m = 1, ..., J . Having calculated the quantities x · vm and vj · vm, we
solve the resulting system of linear equations for the aj .

If, instead of an arbitrary basis {v1, ..., vJ}, we use an orthogonal basis
{u1, ..., uJ}, that is, then uj · um = 0, unless j = m, then the system of
linear equations is now trivial to solve. The solution is aj = x · uj/uj · uj ,
for each j. Of course, we still need to compute the quantities x · uj .

The least-squares solution of the linear system of equations Ax = b is

x̂ = (ATA)−1AT b = Q−1c.

To express x̂ as a linear combination of the members of an orthogonal basis
{u1, ..., uJ} we need the quantities x̂ ·uj , which usually means that we need
to know x̂ first. For a special kind of basis, a Q-conjugate basis, knowing x̂
ahead of time is not necessary; we need only know Q and c. Therefore, we
can use such a basis to find x̂. This is the essence of the conjugate gradient
method (CGM), in which we calculate a conjugate basis and, in the process,
determine x̂.

13.4.1 Conjugate Directions

From Equation (13.2) we have

(c−Qxk) · dk = 0,

which can be expressed as

(x̂− xk) ·Qdk = (x̂− xk)TQdk = 0.

Two vectors x and y are said to be Q-orthogonal (or Q-conjugate, or just
conjugate), if x · Qy = 0. So, the least-squares solution that we seek lies
in a direction from xk that is Q-orthogonal to dk. This suggests that we
can do better than steepest descent if we take the next direction to be
Q-orthogonal to the previous one, rather than just orthogonal. This leads
us to conjugate direction methods.

236 A First Course in Optimization

Definition 13.1 We say that the set {p1, ..., pn} is a conjugate set for RJ
if pi ·Qpj = 0 for i 6= j.

Lemma 13.4 A conjugate set that does not contain zero is linearly inde-
pendent. If pn 6= 0 for n = 1, ..., J , then the least-squares vector x̂ can be
written as

x̂ = a1p
1 + ...+ aJp

J ,

with aj = c · pj/pj ·Qpj for each j.

Proof: Use the Q-inner product 〈x, y〉Q = x ·Qy.

Therefore, once we have a conjugate basis, computing the least squares
solution is trivial. Generating a conjugate basis can obviously be done using
the standard Gram–Schmidt approach.

13.4.2 The Gram–Schmidt Method

Let {v1, ..., vJ} be a linearly independent set of vectors in the space
RM , where J ≤ M . The Gram–Schmidt method uses the vj to create an
orthogonal basis {u1, ..., uJ} for the span of the vj . Begin by taking u1 = v1.
For j = 2, ..., J , let

uj = vj − u1 · vj

u1 · u1
u1 − ...− uj−1 · vj

uj−1 · uj−1
uj−1.

To apply this approach to obtain a conjugate basis, we would simply replace
the dot products uk · vj and uk · uk with the Q-inner products, that is,

pj = vj − p1 ·Qvj

p1 ·Qp1
p1 − ...− pj−1 ·Qvj

pj−1 ·Qpj−1
pj−1. (13.5)

Even though the Q-inner products can always be written as x · Qy =
Ax ·Ay, so that we need not compute the matrix Q, calculating a conjugate
basis using Gram–Schmidt is not practical for large J . There is a way out,
fortunately.

If we take p1 = v1 and vj = Qpj−1, we have a much more efficient
mechanism for generating a conjugate basis, namely a three-term recursion
formula [151]. The set {p1, Qp1, ..., QpJ−1} need not be a linearly indepen-
dent set, in general, but, if our goal is to find x̂, and not really to calculate
a full conjugate basis, this does not matter, as we shall see.

Theorem 13.3 Let p1 6= 0 be arbitrary. Let p2 be given by

p2 = Qp1 − Qp1 ·Qp1

p1 ·Qp1
p1,

Conjugate-Direction Methods 237

so that p2 ·Qp1 = 0. Then, for n ≥ 2, let pn+1 be given by

pn+1 = Qpn − Qpn ·Qpn

pn ·Qpn
pn − Qpn−1 ·Qpn

pn−1 ·Qpn−1
pn−1. (13.6)

Then, the set {p1, ..., pJ} is a conjugate set for RJ . If pn 6= 0 for each n,
then the set is a conjugate basis for RJ .

Proof: We consider the induction step of the proof. Assume that
{p1, ..., pn} is aQ-orthogonal set of vectors; we then show that {p1, ..., pn+1}
is also, provided that n ≤ J − 1. It is clear from Equation (13.6) that

pn+1 ·Qpn = pn+1 ·Qpn−1 = 0.

For j ≤ n− 2, we have

pn+1 ·Qpj = pj ·Qpn+1 = pj ·Q2pn − apj ·Qpn − bpj ·Qpn−1,

for constants a and b. The second and third terms on the right side are
then zero because of the induction hypothesis. The first term is also zero
since

pj ·Q2pn = (Qpj) ·Qpn = 0

because Qpj is in the span of {p1, ..., pj+1}, and so is Q-orthogonal to pn.

The calculations in the three-term recursion formula Equation (13.6)
also occur in the Gram–Schmidt approach in Equation (13.5); the point is
that Equation (13.6) uses only the first three terms, in every case.

13.5 The Conjugate Gradient Method

13.5.1 The Main Idea

The main idea in the conjugate gradient method (CGM) is to build the
conjugate set as we calculate the least squares solution using the iterative
algorithm

xn = xn−1 + αnp
n.

The αn is chosen so as to minimize f(xn−1 + αpn), as a function of α. So
we have

αn =
rn · pn

pn ·Qpn
,

238 A First Course in Optimization

where rn = c − Qxn−1. Since the function f(x) = 1
2 ||Ax − b||22 has for

its gradient ∇f(x) = AT (Ax − b) = Qx − c, the residual vector rn =
c − Qxn−1 is the direction of steepest descent from the point x = xn−1.
The CGM combines the use of the negative gradient directions from the
steepest descent method with the use of a conjugate basis of directions, by
using the rn+1 to construct the next direction pn+1 in such a way as to
form a conjugate set {p1, ..., pJ}.

13.5.2 A Recursive Formula

As before, there is an efficient recursive formula that provides the next
direction: Let p1 = r1 = (c−Qx0) and for j = 2, 3, ...

pj = rj − βj−1pj−1, (13.7)

with

βj−1 =
rj ·Qpj−1

pj−1 ·Qpj−1
.

Note that it follows from the definition of βj−1 that

pjQpj−1 = 0. (13.8)

Since the αn is the optimal choice and

rn+1 = −∇f(xn),

we have, according to Equation (13.2),

rn+1 · pn = 0.

In theory, the CGM converges to the least squares solution in finitely
many steps, since we either reach pn+1 = 0 or n + 1 = J . In practice, the
CGM can be employed as a fully iterative method by cycling back through
the previously used directions.

An induction proof similar to the one used to prove Theorem 13.3 es-
tablishes that the set {p1, ..., pJ} is a conjugate set [151, 164]. In fact, we
can say more.

Theorem 13.4 For n = 1, 2, ..., J and j = 1, ..., n− 1 we have

(1) rn · rj = 0;

(2) rn · pj = 0; and

(3) pn ·Qpj = 0.

The proof presented here through a series of exercises at the end of the
chapter is based on that given in [164].

Conjugate-Direction Methods 239

13.6 Krylov Subspaces

Another approach to deriving the conjugate gradient method is to use
Krylov subspaces. If we select x0 = 0 as our starting vector for the CGM,
then p1 = r1 = c, and each pn+1 and xn+1 lie in the Krylov subspace
Kn(Q, c), defined to be the span of the vectors {c,Qc,Q2c, ..., Qnc}.

For any x in RJ , we have

‖x− x̂‖2Q = (x− x̂)TQ(x− x̂).

Minimizing ‖x− x̂‖2Q over all x in Kn(Q, c) is equivalent to minimizing the

same function over all x of the form x = xn + αpn+1. This, in turn, is
equivalent to minimizing

−2αpn+1 · rn+1 + α2pn+1 ·Qpn+1,

over all α, which has for its solution the value α = αn+1 used to calculate
xn+1 in the CGM.

13.7 Extensions of the CGM

The convergence rate of the CGM depends on the condition number of
the matrix Q, which is the ratio of its largest to its smallest eigenvalues.
When the condition number is much greater than one, convergence can be
accelerated by preconditioning the matrix Q; this means replacing Q with
P−1/2QP−1/2, for some positive-definite approximation P of Q (see [7]).

There are versions of the CGM for the minimization of non-quadratic
functions. In the quadratic case the next conjugate direction pn+1 is built
from the residual rn+1 and pn. Since, in that case, rn+1 = −∇f(xn), this
suggests that in the non-quadratic case we build pn+1 from −∇f(xn) and
pn. This leads to the Fletcher–Reeves method. Other similar algorithms,
such as the Polak–Ribiere and the Hestenes–Stiefel methods, perform better
on certain problems [164].

13.8 Exercises

Ex. 13.1 There are several lemmas in this chapter whose proofs are only
sketched. Complete the proofs of these lemma.

240 A First Course in Optimization

The following exercises refer to the Conjugate Gradient Method.

Ex. 13.2 Show that

rn+1 = rn − αnQpn, (13.9)

so Qpn is in the span of rn+1 and rn.

Ex. 13.3 Prove that rn = 0 whenever pn = 0, in which case we have
c = Qxn−1, so that xn−1 is the least-squares solution.

Ex. 13.4 Show that rn · pn = rn · rn, so that

αn =
rn · rn

pn ·Qpn
.

The proof of Theorem 13.4 uses induction on the number n. Throughout
the following exercises assume that the statements in Theorem 13.4 hold
for some fixed n with 2 ≤ n < J and for j = 1, 2, ..., n− 1. We prove that
they hold also for n+ 1 and j = 1, 2, ..., n.

Ex. 13.5 Show that pn ·Qpn = rn ·Qpn, so that

αn =
rn · rn

rn ·Qpn
. (13.10)

Hints: Use Equation (13.7) and the induction assumption concerning (3)
of the Theorem.

Ex. 13.6 Show that rn+1 ·rn = 0. Hint: Use Equations (13.10) and (13.9).

Ex. 13.7 Show that rn+1 ·rj = 0, for j = 1, ..., n−1. Hints: Write out rn+1

using Equation (13.9) and rj using Equation (13.7), and use the induction
hypotheses.

Ex. 13.8 Show that rn+1 · pj = 0, for j = 1, ..., n. Hints: Use Equations
(13.9) and (13.7) and induction assumptions (2) and (3).

Ex. 13.9 Show that pn+1 ·Qpj = 0, for j = 1, ..., n−1. Hints: Use Equation
(13.9), the previous exercise, and the induction assumptions.

The final step in the proof is to show that pn+1 · Qpn = 0. But this
follows immediately from Equation (13.8).

Chapter 14

Operators

14.1 Chapter Summary . 241
14.2 Operators . 242
14.3 Contraction Operators . 243

14.3.1 Lipschitz-Continuous Operators . 243
14.3.2 Nonexpansive Operators . 243
14.3.3 Strict Contractions . 244
14.3.4 Eventual Strict Contractions . 245
14.3.5 Instability . 246

14.4 Orthogonal-Projection Operators . 246
14.4.1 Properties of the Operator PC . 247
14.4.2 PC Is Nonexpansive . 247
14.4.3 PC Is Firmly Nonexpansive . 247
14.4.4 The Search for Other Properties of PC 248

14.5 Two Useful Identities . 248
14.6 Averaged Operators . 249
14.7 Gradient Operators . 251
14.8 The Krasnosel’skii–Mann–Opial Theorem . 252
14.9 Affine-Linear Operators . 253
14.10 Paracontractive Operators . 253

14.10.1 Linear and Affine Paracontractions . 254
14.10.2 The Elsner–Koltracht–Neumann Theorem 256

14.11 Matrix Norms . 257
14.11.1 Induced Matrix Norms . 257
14.11.2 Condition Number of a Square Matrix 258
14.11.3 Some Examples of Induced Matrix Norms 259
14.11.4 The Euclidean Norm of a Square Matrix 260

14.12 Exercises . 262

14.1 Chapter Summary

In a broad sense, all iterative algorithms generate a sequence {xk} of
vectors. The sequence may converge for any starting vector x0, or may

241

242 A First Course in Optimization

converge only if the x0 is sufficiently close to a solution. The limit, when it
exists, may depend on x0, and may, or may not, solve the original problem.
Convergence to the limit may be slow and the algorithm may need to be
accelerated. The algorithm may involve measured data. The limit may be
sensitive to noise in the data and the algorithm may need to be regularized
to lessen this sensitivity. The algorithm may be quite general, applying to
all problems in a broad class, or it may be tailored to the problem at hand.
Each step of the algorithm may be costly, but only a few steps may be
needed to produce a suitable approximate answer, or, each step may be
easily performed, but many such steps are needed. Although convergence
of an algorithm is important, theoretically, sometimes in practice only a
few iterative steps are used. In this chapter we consider several classes of
operators that play important roles in optimization. Up to now we have
largely limited our discussion to real vectors and real matrices. In this chap-
ter it is convenient to broaden the discussion to include complex vectors
and matrices.

14.2 Operators

For most of the iterative algorithms we shall consider, the iterative step
is

xk+1 = Txk,

for some operator T . If T is a continuous operator (and it usually is), and
the sequence {T kx0} converges to x̂, then T x̂ = x̂, that is, x̂ is a fixed point
of the operator T . We denote by Fix(T) the set of fixed points of T . The
convergence of the iterative sequence {T kx0} will depend on the properties
of the operator T .

Our approach here will be to identify several classes of operators for
which the iterative sequence is known to converge, to examine the con-
vergence theorems that apply to each class, to describe several applied
problems that can be solved by iterative means, to present iterative al-
gorithms for solving these problems, and to establish that the operator
involved in each of these algorithms is a member of one of the designated
classes. We shall be particularly interested in operators that are nonexpan-
sive, firmly nonexpansive, or averaged, in the sense of the two-norm, as
well as operators that are strictly contractive or paracontractive for some
norm.

Operators 243

14.3 Contraction Operators

Contraction operators are perhaps the best known class of operators
associated with iterative algorithms.

14.3.1 Lipschitz-Continuous Operators

Definition 14.1 An operator T on CJ is Lipschitz continuous, with re-
spect to a vector norm || · ||, or L-Lipschitz, if there is a positive constant
L such that

||Tx− Ty|| ≤ L||x− y||,

for all x and y in CJ .

For example, if f : R→ R, and g(x) = f ′(x) is differentiable, the Mean
Value Theorem tells us that

g(b) = g(a) + g′(c)(b− a),

for some c between a and b. Therefore,

|f ′(b)− f ′(a)| ≤ |f ′′(c)||b− a|.

If |f ′′(x)| ≤ L, for all x, then g(x) = f ′(x) is L-Lipschitz. More generally,
if f : CJ → R is twice differentiable and ‖∇2f(x)‖2 ≤ L, for all x, then
T = ∇f is L-Lipschitz, with respect to the Euclidean norm. The two-norm
of the Hessian matrix ∇2f(x) is the largest of the absolute values of its
eigenvalues.

14.3.2 Nonexpansive Operators

An important special class of Lipschitz-continuous operators are the
nonexpansive, or contractive, operators.

Definition 14.2 If L = 1, then T is said to be nonexpansive (ne), or a
contraction, with respect to the given norm. In other words, T is ne for a
given norm if, for every x and y, we have

‖Tx− Ty‖ ≤ ‖x− y‖.

Lemma 14.1 Let T : CJ → CJ be a nonexpansive operator, with respect
to the 2-norm. Then the set F of fixed points of T is a convex set.

244 A First Course in Optimization

Proof: Select two distinct points a and b in F , a scalar α in the open
interval (0, 1), and let c = αa+ (1− α)b. We show that Tc = c. Note that

a− c =
1− α
α

(c− b).

We have

‖a−b‖2 = ‖a−Tc+Tc−b‖2 ≤ ‖a−Tc‖2+‖Tc−b‖2 = ‖Ta−Tc‖2+‖Tc−Tb‖2

≤ ‖a− c‖2 + ‖c− b‖2 = ‖a− b‖2;

the last equality follows since a − c is a multiple of (c − b). From this, we
conclude that

‖a− Tc‖2 = ‖a− c‖2,

‖Tc− b‖2 = ‖c− b‖2,

and that a − Tc and Tc− b are positive multiples of one another, that is,
there is β > 0 such that

a− Tc = β(Tc− b),

or

Tc =
1

1 + β
a+

β

1 + β
b = γa+ (1− γ)b.

Then inserting c = αa+ (1− α)b and Tc = γa+ (1− γ)b into

‖Tc− b‖2 = ‖c− b‖2,

we find that γ = α and so Tc = c.

The reader should note that the proof of the previous lemma depends
heavily on the fact that the norm is the two-norm. If x and y are any
nonnegative vectors then ‖x + y‖1 = ‖x‖1 + ‖y‖1, so the proof would not
hold, if, for example, we used the one-norm instead.

We want to find properties of an operator T that guarantee that the
sequence of iterates {T kx0} will converge to a fixed point of T , for any
x0, whenever fixed points exist. Being nonexpansive is not enough; the
nonexpansive operator T = −I, where Ix = x is the identity operator, has
the fixed point x = 0, but the sequence {T kx0} converges only if x0 = 0.

14.3.3 Strict Contractions

One property that guarantees not only that the iterates converge, but
that there is a fixed point is the property of being a strict contraction.

Operators 245

Definition 14.3 An operator T on CJ is a strict contraction (sc), with
respect to a vector norm || · ||, if there is r ∈ (0, 1) such that

||Tx− Ty|| ≤ r||x− y||,

for all vectors x and y.

For strict contractions, we have the Banach–Picard Theorem [103].

Theorem 14.1 (The Banach–Picard Theorem) Let T be sc. Then,
there is a unique fixed point of T and, for any starting vector x0, the se-
quence {T kx0} converges to the fixed point.

The key step in the proof is to show that {xk} is a Cauchy sequence,
therefore, it has a limit.

Corollary 14.1 If Tn is a strict contraction, for some positive integer n,
then T has a fixed point.

Proof: Suppose that Tnx̂ = x̂. Then

TnT x̂ = TTnx̂ = T x̂,

so that both x̂ and T x̂ are fixed points of Tn. But Tn has a unique fixed
point. Therefore, T x̂ = x̂.

In many of the applications of interest to us, there will be multiple
fixed points of T . Therefore, T will not be sc for any vector norm, and the
Banach–Picard fixed-point theorem will not apply. We need to consider
other classes of operators. These classes of operators will emerge as we
investigate the properties of orthogonal-projection operators.

14.3.4 Eventual Strict Contractions

Consider the problem of finding x such that x = e−x. We can see from
the graphs of y = x and y = e−x that there is a unique solution, which we
shall denote by z. It turns out that z = 0.56714329040978.... Let us try to
find z using the iterative sequence xk+1 = e−xk , starting with some real
x0. Note that we always have xk > 0 for k = 1, 2, ..., even if x0 < 0. The
operator here is Tx = e−x, which, for simplicity, we view as an operator
on the nonnegative real numbers.

Since the derivative of the function f(x) = e−x is f ′(x) = −e−x, we
have |f ′(x)| ≤ 1, for all nonnegative x, so T is nonexpansive. But we do
not have |f ′(x)| ≤ r < 1, for all nonnegative x; therefore, T is not a
strict contraction, when considered as an operator on the nonnegative real
numbers.

246 A First Course in Optimization

If we choose x0 = 0, then x1 = 1, x2 = 0.368, approximately, and so on.
Continuing this iteration a few more times, we find that after about k = 14,
the value of xk settles down to 0.567, which is the answer, to three decimal
places. The same thing is seen to happen for any positive starting points
x0. It would seem that T has another property, besides being nonexpansive,
that is forcing convergence. What is it?

From the fact that 1− e−x ≤ x, for all real x, with equality if and only
if x = 0, we can show easily that, for r = max{e−x1 , e−x2},

|z − xk+1| ≤ r|z − xk|,

for k = 3, 4, Since r < 1, it follows, just as in the proof of the Banach–
Picard Theorem, that {xk} is a Cauchy sequence and therefore converges.
The limit must be a fixed point of T , so the limit must be z.

Although the operator T is not a strict contraction, with respect to the
nonnegative numbers, once we begin to calculate the sequence of iterates
the operator T effectively becomes a strict contraction, with respect to the
vectors of the particular sequence being constructed, and so the sequence
converges to a fixed point of T . We cannot conclude from this that T has
a unique fixed point, as we can in the case of a strict contraction; we must
decide that by other means.

We note in passing that the operator Tx = e−x is paracontractive,
so that its convergence is also a consequence of the Elsner–Koltracht–
Neumann Theorem 14.3, which we discuss later in this chapter.

14.3.5 Instability

Suppose we rewrite the equation e−x = x as x = − log x, and define
Tx = − log x, for x > 0. Now our iterative scheme becomes xk+1 = Txk =
− log xk. A few calculations will convince us that the sequence {xk} is
diverging away from the correct answer, not converging to it. The lesson
here is that we cannot casually reformulate our problem as a fixed-point
problem and expect the iterates to converge to the answer. What matters
is the behavior of the operator T .

14.4 Orthogonal-Projection Operators

If C is a closed, nonempty convex set in CJ , and x is any vector, then,
as we have seen, there is a unique point PCx in C closest to x, with respect
to the 2-norm. This point is called the orthogonal projection of x onto C.
If C is a subspace, then we can get an explicit description of PCx in terms

Operators 247

of x; for general convex sets C, however, we will not be able to express PCx
explicitly, and certain approximations will be needed. Orthogonal projec-
tion operators are central to our discussion, and, in this overview, we focus
on problems involving convex sets, algorithms involving orthogonal projec-
tion onto convex sets, and classes of operators derived from properties of
orthogonal-projection operators.

14.4.1 Properties of the Operator PC

Although we usually do not have an explicit expression for PCx, we
can, however, characterize PCx as the unique member of C for which

〈PCx− x, c− PCx〉 ≥ 0,

for all c in C; see Proposition 4.4.

14.4.2 PC Is Nonexpansive

It follows from Corollary 4.1 and Cauchy’s Inequality that the
orthogonal-projection operator T = PC is nonexpansive, with respect to
the Euclidean norm, that is,

||PCx− PCy||2 ≤ ||x− y||2,

for all x and y. Because the operator PC has multiple fixed points, PC
cannot be a strict contraction, unless the set C is a singleton set.

14.4.3 PC Is Firmly Nonexpansive

Definition 14.4 An operator T is said to be firmly nonexpansive (fne) if

〈Tx− Ty, x− y〉 ≥ ||Tx− Ty||22,

for all x and y in CJ .

Lemma 14.2 An operator F : CJ → CJ is fne if and only if F = 1
2 (I+N),

for some operator N that is ne with respect to the two-norm.

Proof: Suppose that F = 1
2 (I +N). We show that F is fne if and only if

N is ne in the two-norm. First, we have

〈Fx− Fy, x− y〉 =
1

2
‖x− y‖22 +

1

2
〈Nx−Ny, x− y〉.

Also,∥∥∥1

2
(I+N)x− 1

2
(I+N)y

∥∥∥2
2

=
1

4
‖x−y‖2+

1

4
‖Nx−Ny‖2+

1

2
〈Nx−Ny, x−y〉.

248 A First Course in Optimization

Therefore,
〈Fx− Fy, x− y〉 ≥ ‖Fx− Fy‖22

if and only if
‖Nx−Ny‖22 ≤ ‖x− y‖22.

Corollary 14.2 For m = 1, 2, ...,M , let αm > 0, with
∑M
m=1 αm = 1, and

let Fm : CJ → CJ be fne. Then the operator

F =

M∑
m=1

αmFm

is also fne. In particular, the arithmetic mean of the Fm is fne.

Corollary 14.3 An operator F is fne if and only if I − F is fne.

From Equation (4.4), we see that the operator T = PC is not simply
ne, but fne, as well. A good source for more material on these topics is the
book by Goebel and Reich [118].

14.4.4 The Search for Other Properties of PC

The class of nonexpansive operators is too large for our purposes; the
operator Tx = −x is nonexpansive, but the sequence {T kx0} does not
converge, in general, even though a fixed point, x = 0, exists. The class
of firmly nonexpansive operators is too small for our purposes. Although
the convergence of the iterative sequence {T kx0} to a fixed point does
hold for firmly nonexpansive T , whenever fixed points exist, the product
of two or more fne operators need not be fne; that is, the class of fne
operators is not closed to finite products. This poses a problem, since, as
we shall see, products of orthogonal-projection operators arise in several of
the algorithms we wish to consider. We need a class of operators smaller
than the ne ones, but larger than the fne ones, closed to finite products,
and for which the sequence of iterates {T kx0} will converge, for any x0,
whenever fixed points exist. The class we shall consider is the class of
averaged operators. In all discussion of averaged operators the norm will
be the two-norm.

14.5 Two Useful Identities

The identities in the next two lemmas relate an arbitrary operator T to
its complement, G = I − T , where I denotes the identity operator. These

Operators 249

identities will allow us to transform properties of T into properties of G
that may be easier to work with. A simple calculation is all that is needed
to establish the following lemma.

Lemma 14.3 Let T be an arbitrary operator T on CJ and G = I − T .
Then

||x− y||22 − ||Tx− Ty||22 = 2(〈Gx−Gy, x− y〉) − ||Gx−Gy||22. (14.1)

Lemma 14.4 Let T be an arbitrary operator T on CJ and G = I − T .
Then

〈Tx− Ty, x− y〉 − ||Tx− Ty||22 =

〈Gx−Gy, x− y〉 − ||Gx−Gy||22.

Proof: Use the previous lemma.

14.6 Averaged Operators

The term “averaged operator” appears in the work of Baillon, Bruck
and Reich [28, 8]. There are several ways to define averaged operators. One
way is based on Lemma 14.2.

Definition 14.5 An operator T : CJ → CJ is averaged (av) if there is
an operator N that is ne in the two-norm and α ∈ (0, 1) such that T =
(1− α)I + αN . Then we say that T is α-averaged.

It follows that T is fne if and only if T is α-averaged for α = 1
2 . Every aver-

aged operator is ne, with respect to the two-norm, and every fne operator
is av.

We can also describe averaged operators T in terms of the complement
operator, G = I − T .

Definition 14.6 An operator G on CJ is called ν-inverse strongly mono-
tone (ν-ism)[119] (also called co-coercive in [86]) if there is ν > 0 such
that

〈Gx−Gy, x− y〉 ≥ ν||Gx−Gy||22.

Lemma 14.5 An operator T is ne, with respect to the two-norm, if and
only if its complement G = I −T is 1

2 -ism, and T is fne if and only if G is
1-ism, and if and only if G is fne. Also, T is ne if and only if F = (I+T)/2
is fne. If G is ν-ism and γ > 0 then the operator γG is ν

γ -ism.

250 A First Course in Optimization

Lemma 14.6 An operator T is averaged if and only if G = I−T is ν-ism
for some ν > 1

2 . If G is 1
2α -ism, for some α ∈ (0, 1), then T is α-av.

Proof: We assume first that there is α ∈ (0, 1) and ne operator N such
that T = (1 − α)I + αN , and so G = I − T = α(I − N). Since N is ne,
I − N is 1

2 -ism and G = α(I − N) is 1
2α -ism. Conversely, assume that G

is ν-ism for some ν > 1
2 . Let α = 1

2ν and write T = (1 − α)I + αN for
N = I − 1

αG. Since I −N = 1
αG, I −N is αν-ism. Consequently I −N is

1
2 -ism and N is ne.

An averaged operator is easily constructed from a given operator N
that is ne in the two-norm by taking a convex combination of N and the
identity I. The beauty of the class of av operators is that it contains many
operators, such as PC , that are not originally defined in this way. As we
shall see shortly, finite products of averaged operators are again averaged,
so the product of finitely many orthogonal projections is av.

We present now the fundamental properties of averaged operators, in
preparation for the proof that the class of averaged operators is closed to
finite products.

Note that we can establish that a given operator is av by showing that
there is an α in the interval (0, 1) such that the operator

1

α
(A− (1− α)I)

is ne. Using this approach, we can easily show that if T is sc, then T is av.

Lemma 14.7 Let T = (1−α)A+αN for some α ∈ (0, 1). If A is averaged
and N is nonexpansive then T is averaged.

Proof: Let A = (1 − β)I + βM for some β ∈ (0, 1) and ne operator M .
Let 1− γ = (1− α)(1− β). Then we have

T = (1− γ)I + γ[(1− α)βγ−1M + αγ−1N].

Since the operator K = (1− α)βγ−1M + αγ−1N is easily shown to be ne
and the convex combination of two ne operators is again ne, T is averaged.

Corollary 14.4 If A and B are av and α is in the interval [0, 1], then the
operator T = (1 − α)A + αB formed by taking the convex combination of
A and B is av.

Corollary 14.5 Let T = (1 − α)F + αN for some α ∈ (0, 1). If F is fne
and N is ne then T is averaged.

Operators 251

The orthogonal-projection operators PH onto hyperplanes H = H(a, γ)
are sometimes used with relaxation, which means that PH is replaced by
the operator

T = (1− ω)I + ωPH ,

for some ω in the interval (0, 2). Clearly, if ω is in the interval (0, 1), then T
is av, by definition, since PH is ne. We want to show that, even for ω in the
interval [1, 2), T is av. To do this, we consider the operator RH = 2PH − I,
which is reflection through H; that is,

PHx =
1

2
(x+RHx),

for each x.

Lemma 14.8 The operator RH = 2PH − I is an isometry; that is,

||RHx−RHy||2 = ||x− y||2,

for all x and y, so that RH is ne.

Lemma 14.9 For ω = 1 + γ in the interval [1, 2), we have

(1− ω)I + ωPH = αI + (1− α)RH ,

for α = 1−γ
2 ; therefore, T = (1− ω)I + ωPH is av.

The product of finitely many ne operators is again ne, while the product
of finitely many fne operators, even orthogonal projections, need not be fne.
It is a helpful fact that the product of finitely many av operators is again
av.

If A = (1− α)I + αN is averaged and B is averaged then T = AB has
the form T = (1−α)B+αNB. Since B is av and NB is ne, it follows from
Lemma 14.7 that T is averaged. Summarizing, we have

Proposition 14.1 If A and B are averaged, then T = AB is averaged.

14.7 Gradient Operators

Another type of operator that is averaged can be derived from gradi-
ent operators. Let g(x) : CJ → C be a differentiable convex function and

252 A First Course in Optimization

f(x) = ∇g(x) its gradient. If ∇g is nonexpansive, then, according to Theo-
rem 9.20, ∇g is fne. If, for some L > 0, ∇g is L-Lipschitz, for the two-norm,
that is,

||∇g(x)−∇g(y)||2 ≤ L||x− y||2,

for all x and y, then 1
L∇g is ne, therefore fne, and the operator T = I−γ∇g

is av, for 0 < γ < 2
L . From Corollary 12.1 we know that the operators PC

are actually gradient operators; PCx = ∇g(x) for

g(x) =
1

2
(‖x‖22 − ‖x− PCx‖22).

14.8 The Krasnosel’skii–Mann–Opial Theorem

For any operator T that is averaged, convergence of the sequence
{T kx0} to a fixed point of T , whenever fixed points of T exist, is guaran-
teed by the Krasnosel’skii–Mann–Opial (KMO) Theorem [140, 153, 173].
A version of the KMO Theorem 14.2, with variable coefficients, appears in
Reich’s paper [178].

Theorem 14.2 Let T be α-averaged, for some α ∈ (0, 1). Then, for any
x0, the sequence {T kx0} converges to a fixed point of T , whenever Fix(T)
is nonempty.

Proof: Let z be a fixed point of T . The identity in Equation (14.1) is the
key to proving Theorem 14.2.

Using Tz = z and (I − T)z = 0 and setting G = I − T we have

||z − xk||22 − ||Tz − xk+1||22 = 2〈Gz −Gxk, z − xk〉 − ||Gz −Gxk||22.

Since, by Lemma 14.6, G is 1
2α -ism, we have

||z − xk||22 − ||z − xk+1||22 ≥
(1

α
− 1
)
||xk − xk+1||22.

Consequently the sequence {xk} is bounded, the sequence {||z − xk||2} is
decreasing and the sequence {||xk − xk+1||2} converges to zero.

Let x∗ be a cluster point of {xk}. Then we have Tx∗ = x∗, so we
may use x∗ in place of the arbitrary fixed point z. It follows then that the
sequence {||x∗−xk||2} is decreasing; since a subsequence converges to zero,
the entire sequence converges to zero. The proof is complete.

Operators 253

An operator T is said to be asymptotically regular if, for any x, the se-
quence {‖T kx−T k+1x‖} converges to zero. The proof of the KMO Theorem
14.2 involves showing that any averaged operator is asymptotically regular.
In [173] Opial generalizes the KMO Theorem, proving that, if T is nonex-
pansive and asymptotically regular, then the sequence {T kx} converges to
a fixed point of T , whenever fixed points exist, for any x.

Note that, in the KMO Theorem, we assumed that T is α-averaged, so
that G = I−T is ν-ism, for some ν > 1

2 . But we actually used a somewhat
weaker condition on G; we required only that

〈Gz −Gx, z − x〉 ≥ ν‖Gz −Gx‖2

for z such that Gz = 0. This weaker property is called weakly ν-ism.

14.9 Affine-Linear Operators

It may not always be easy to decide if a given operator is averaged.
The class of affine-linear operators provides an interesting illustration of
the problem.

The affine operator Tx = Bx+d will be ne, sc, fne, or av precisely when
the linear operator given by multiplication by the matrix B is the same.

When B is Hermitian, we can determine if B belongs to these classes
by examining its eigenvalues λ:

• B is nonexpansive if and only if −1 ≤ λ ≤ 1, for all λ;

• B is averaged if and only if −1 < λ ≤ 1, for all λ;

• B is a strict contraction if and only if −1 < λ < 1, for all λ;

• B is firmly nonexpansive if and only if 0 ≤ λ ≤ 1, for all λ.

Affine linear operators T that arise, for instance, in splitting methods
for solving systems of linear equations, generally have non-Hermitian linear
part B. Deciding if such operators belong to these classes is more difficult.
Instead, we can ask if the operator is paracontractive, with respect to some
norm.

14.10 Paracontractive Operators

By examining the properties of the orthogonal-projection operators PC ,
we were led to the useful class of averaged operators. As we shall see shortly,

254 A First Course in Optimization

the orthogonal projections also belong to another useful class, the paracon-
tractions.

Definition 14.7 A continuous operator T is called paracontractive (pc),
with respect to a given norm, if T has fixed points and, for every fixed point
y of T , we have

||Tx− y|| < ||x− y||,

unless Tx = x.

Paracontractive operators are studied by Censor and Reich in [80].

Proposition 14.2 The operators T = PC are paracontractive, with respect
to the Euclidean norm.

Proof: It follows from Cauchy’s Inequality that

||PCx− PCy||2 ≤ ||x− y||2,

with equality if and only if

PCx− PCy = α(x− y),

for some scalar α with |α| = 1. But, because

0 ≤ 〈PCx− PCy, x− y〉 = α||x− y||22,

it follows that α = 1, and so

PCx− x = PCy − y.

When we ask if a given operator T is pc, we must specify the norm.
We often construct the norm specifically for the operator involved, as we
did earlier in our discussion of strict contractions, in Equation (14.4). To
illustrate, we consider the case of affine operators.

14.10.1 Linear and Affine Paracontractions

Let the matrix B be diagonalizable and let the columns of V be an
eigenvector basis. Then we have V −1BV = D, where D is the diagonal
matrix having the eigenvalues of B along its diagonal.

Lemma 14.10 A square matrix B is diagonalizable if all its eigenvalues
are distinct.

Operators 255

Proof: Let B be J by J . Let λj be the eigenvalues of B, Bxj = λjx
j , and

xj 6= 0, for j = 1, ..., J . Let xm be the first eigenvector that is in the span
of {xj |j = 1, ...,m− 1}. Then

xm = a1x
1 + ...am−1x

m−1,

for some constants aj that are not all zero. Multiply both sides by λm to
get

λmx
m = a1λmx

1 + ...am−1λmx
m−1.

From

λmx
m = Axm = a1λ1x

1 + ...am−1λm−1x
m−1,

it follows that

a1(λm − λ1)x1 + ...+ am−1(λm − λm−1)xm−1 = 0,

from which we can conclude that some xn in {x1, ..., xm−1} is in the span
of the others. This is a contradiction.

We see from this Lemma that almost all square matrices B are diago-
nalizable. Indeed, all Hermitian B are diagonalizable. If B has real entries,
but is not symmetric, then the eigenvalues of B need not be real, and the
eigenvectors of B can have non-real entries. Consequently, we must consider
B as a linear operator on CJ , if we are to talk about diagonalizability. For
example, consider the real matrix

B =

[
0 1
−1 0

]
.

Its eigenvalues are λ = i and λ = −i. The corresponding eigenvectors are
(1, i)T and (1,−i)T . The matrix B is then diagonalizable as an operator
on C2, but not as an operator on R2.

Proposition 14.3 Let T be an affine-linear operator whose linear part B
is diagonalizable, and |λ| < 1 for all eigenvalues λ of B that are not equal to
one. Then the operator T is pc, with respect to the norm given by Equation
(14.4).

Proof: This is Exercise 14.9.

We see from Proposition 14.3 that, for the case of affine operators T
whose linear part is not Hermitian, instead of asking if T is av, we can ask
if T is pc; since B will almost certainly be diagonalizable, we can answer
this question by examining the eigenvalues of B.

Unlike the class of averaged operators, the class of paracontractive op-
erators is not necessarily closed to finite products, unless those factor op-
erators have a common fixed point.

256 A First Course in Optimization

14.10.2 The Elsner–Koltracht–Neumann Theorem

Our interest in paracontractions is due to the Elsner–Koltracht–
Neumann (EKN) Theorem [107]:

Theorem 14.3 Let T be pc with respect to some vector norm. If T has
fixed points, then the sequence {T kx0} converges to a fixed point of T , for
all starting vectors x0.

We follow the development in [107].

Theorem 14.4 Suppose that there is a vector norm on CJ , with respect
to which each Ti is a pc operator, for i = 1, ..., I, and that F = ∩Ii=1Fix(Ti)
is not empty. For k = 0, 1, ..., let i(k) = k(mod I) + 1, and xk+1 = Ti(k)x

k.

The sequence {xk} converges to a member of F , for every starting vector
x0.

Proof: Let y ∈ F . Then, for k = 0, 1, ...,

||xk+1 − y|| = ||Ti(k)xk − y|| ≤ ||xk − y||,

so that the sequence {||xk − y||} is decreasing; let d ≥ 0 be its limit. Since
the sequence {xk} is bounded, we select an arbitrary cluster point, x∗.
Then d = ||x∗ − y||, from which we can conclude that

||Tix∗ − y|| = ||x∗ − y||,

and Tix
∗ = x∗, for i = 1, ..., I; therefore, x∗ ∈ F . Replacing y, an arbitrary

member of F , with x∗, we have that ||xk − x∗|| is decreasing. But, a sub-
sequence converges to zero, so the whole sequence must converge to zero.
This completes the proof.

Corollary 14.6 If T is pc with respect to some vector norm, and T has
fixed points, then the iterative sequence {T kx0} converges to a fixed point
of T , for every starting vector x0.

Corollary 14.7 If T = TITI−1 · · · T2T1, and F = ∩Ii=1Fix (Ti) is not
empty, then F = Fix (T).

Proof: The sequence xk+1 = Ti(k)x
k converges to a member of Fix (T), for

every x0. Select x0 in F .

Corollary 14.8 The product T of two or more pc operators Ti, i = 1, ..., I
is again a pc operator, if F = ∩Ii=1Fix (Ti) is not empty.

Operators 257

Proof: Suppose that for T = TITI−1 · · · T2T1, and y ∈ F = Fix (T), we
have

||Tx− y|| = ||x− y||.
Then, since

||TI(TI−1 · · · T1)x− y|| ≤ ||TI−1 · · · T1x− y|| ≤ ...

≤ ||T1x− y|| ≤ ||x− y||,
it follows that

||Tix− y|| = ||x− y||,
and Tix = x, for each i. Therefore, Tx = x.

14.11 Matrix Norms

Any matrix can be turned into a vector by vectorization. Therefore,
we can define a norm for any matrix A by simply vectorizing the matrix
and taking a norm of the resulting vector; the two-norm of the vectorized
matrix A is the Frobenius norm of the matrix itself, denoted ‖A‖F . The
Frobenius norm does have the property

‖Ax‖2 ≤ ‖A‖F‖x‖2,
known as submultiplicativity so that it is compatible with the role of A as a
linear transformation, but other norms for matrices may not be compatible
with this role for A. For that reason, we consider compatible norms on
matrices that are induced from norms of the vectors on which the matrices
operate.

14.11.1 Induced Matrix Norms

One way to obtain a compatible norm for matrices is through the use
of an induced matrix norm.

Definition 14.8 Let ‖x‖ be any norm on CJ , not necessarily the Euclidean
norm, ‖b‖ any norm on CI , and A a rectangular I by J matrix. The in-
duced matrix norm of A, simply denoted ‖A‖, derived from these two vector
norms, is the smallest positive constant c such that

‖Ax‖ ≤ c‖x‖,

258 A First Course in Optimization

for all x in CJ . This induced norm can be written as

‖A‖ = max
x 6=0
{‖Ax‖/‖x‖}.

We study induced matrix norms in order to measure the distance ‖Ax−
Az‖, relative to the distance ‖x− z‖:

‖Ax−Az‖ ≤ ‖A‖ ‖x− z‖,

for all vectors x and z and ‖A‖ is the smallest number for which this
statement can be made.

14.11.2 Condition Number of a Square Matrix

Let S be a square, invertible matrix and z the solution to Sz = h. We
are concerned with the extent to which the solution changes as the right
side, h, changes. Denote by δh a small perturbation of h, and by δz the
solution of Sδz = δh. Then S(z + δz) = h+ δh. Applying the compatibility
condition ‖Ax‖ ≤ ‖A‖‖x‖, we get

‖δz‖ ≤ ‖S−1‖‖δh‖,

and

‖z‖ ≥ ‖h‖/‖S‖.

Therefore

‖δz‖
‖z‖

≤ ‖S‖ ‖S−1‖‖δh‖
‖h‖

.

Definition 14.9 The quantity c = ‖S‖‖S−1‖ is the condition number of
S, with respect to the given matrix norm.

Note that c ≥ 1: for any nonzero z, we have

‖S−1‖ ≥ ‖S−1z‖/‖z‖ = ‖S−1z‖/‖SS−1z‖ ≥ 1/‖S‖.

When S is Hermitian and positive-definite, the condition number of S, with
respect to the matrix norm induced by the Euclidean vector norm, is

c = λmax(S)/λmin(S),

the ratio of the largest to the smallest eigenvalues of S.

Operators 259

14.11.3 Some Examples of Induced Matrix Norms

If we choose the two vector norms carefully, then we can get an explicit
description of ‖A‖, but, in general, we cannot.

For example, let ‖x‖ = ‖x‖1 and ‖Ax‖ = ‖Ax‖1 be the one-norms of
the vectors x and Ax, where

‖x‖1 =

J∑
j=1

|xj |.

Lemma 14.11 The one-norm of A, induced by the one-norms of vectors
in both CJ and CI , is

‖A‖1 = max
{ I∑
i=1

|Aij | , j = 1, 2, ..., J
}
.

Proof: Use basic properties of the absolute value to show that

‖Ax‖1 ≤
J∑
j=1

(I∑
i=1

|Aij |
)
|xj |.

Then let j = m be the index for which the maximum column sum is reached
and select xj = 0, for j 6= m, and xm = 1.

The infinity norm of the vector x is

‖x‖∞ = max
{
|xj | , j = 1, 2, ..., J

}
.

Lemma 14.12 The infinity norm of the matrix A, induced by the infinity
norms of vectors in CJ and CI , is

‖A‖∞ = max
{ J∑
j=1

|Aij | , i = 1, 2, ..., I
}
.

The proof is similar to that of the previous lemma.

Lemma 14.13 Let M be an invertible matrix and ‖x‖ any vector norm.
Define

‖x‖M = ‖Mx‖.

Then, for any square matrix S, the matrix norm

‖S‖M = max
x 6=0
{‖Sx‖M/‖x‖M}

is

‖S‖M = ‖MSM−1‖.

260 A First Course in Optimization

Proof: The proof is left as an exercise.

In [7] Lemma 14.13 is used to prove the following lemma:

Lemma 14.14 Let S be any square matrix and let ε > 0 be given. Then
there is an invertible matrix M such that

‖S‖M ≤ ρ(S) + ε.

14.11.4 The Euclidean Norm of a Square Matrix

We shall be particularly interested in the Euclidean norm (or 2-norm)
of the square matrix A, denoted by ‖A‖2, which is the induced matrix norm
derived from the Euclidean vector norms.

From the definition of the Euclidean norm of A, we know that

‖A‖2 = max{‖Ax‖2/‖x‖2},

with the maximum over all nonzero vectors x. Since

‖Ax‖22 = x†A†Ax,

we have

‖A‖2 =

√
max

{x†A†Ax
x†x

}
, (14.2)

over all nonzero vectors x.

Proposition 14.4 The Euclidean norm of a square matrix is

‖A‖2 =
√
ρ(A†A);

that is, the term inside the square-root in Equation (14.2) is the largest
eigenvalue of the matrix A†A.

Proof: Let

λ1 ≥ λ2 ≥ ... ≥ λJ ≥ 0

and let {uj , j = 1, ..., J} be mutually orthogonal eigenvectors of A†A with
‖uj‖2 = 1. Then, for any x, we have

x =

J∑
j=1

[(uj)†x]uj ,

Operators 261

while

A†Ax =

J∑
j=1

[(uj)†x]A†Auj =

J∑
j=1

λj [(u
j)†x]uj .

It follows that

‖x‖22 = x†x =

J∑
j=1

|(uj)†x|2,

and

‖Ax‖22 = x†A†Ax =

J∑
j=1

λj |(uj)†x|2. (14.3)

Maximizing ‖Ax‖22/‖x‖22 over x 6= 0 is equivalent to maximizing ‖Ax‖22,
subject to ‖x‖22 = 1. The right side of Equation (14.3) is then a convex
combination of the λj , which will have its maximum when only the coeffi-
cient of λ1 is nonzero.

It can be shown that

‖A‖22 ≤ ‖A‖1‖A‖∞;

see [59].
If S is not Hermitian, then the Euclidean norm of S cannot be calculated

directly from the eigenvalues of S. Take, for example, the square, non-
Hermitian matrix

S =

[
i 2
0 i

]
,

having eigenvalues λ = i and λ = i. The eigenvalues of the Hermitian
matrix

S†S =

[
1 −2i
2i 5

]
are λ = 3 + 2

√
2 and λ = 3− 2

√
2. Therefore, the Euclidean norm of S is

‖S‖2 =

√
3 + 2

√
2.

Lemma 14.15 Let T be an affine-linear operator. Then T is a strict con-
traction if and only if ||B||, the induced matrix norm of B, is less than
one.

262 A First Course in Optimization

Definition 14.10 The spectral radius of a square matrix B, written ρ(B),
is the maximum of |λ|, over all eigenvalues λ of B.

Since ρ(B) ≤ ||B|| for every norm on B induced by a vector norm, B
is sc implies that ρ(B) < 1. When B is Hermitian, the matrix norm of B
induced by the Euclidean vector norm is ||B||2 = ρ(B), so if ρ(B) < 1,
then B is sc with respect to the Euclidean norm.

Let Tx = Bx + d be an affine operator. When B is not Hermitian, it
is not as easy to determine if the affine operator T is sc with respect to a
given norm. Instead, we often tailor the norm to the operator T . Suppose
that B is a diagonalizable matrix, that is, there is a basis for CJ consisting
of eigenvectors of B. Let {u1, ..., uJ} be such a basis, and let Buj = λju

j ,
for each j = 1, ..., J . For each x in CJ , there are unique coefficients aj so
that

x =

J∑
j=1

aju
j .

Then let

||x|| =
J∑
j=1

|aj |. (14.4)

Lemma 14.16 The expression || · || in Equation (14.4) defines a norm on
CJ . If ρ(B) < 1, then the affine operator T is sc, with respect to this norm.

It is known that, for any square matrix B and any ε > 0, there is a vector
norm for which the induced matrix norm satisfies ||B|| ≤ ρ(B) + ε. There-
fore, if B is an arbitrary square matrix with ρ(B) < 1, there is a vector
norm with respect to which B is sc.

14.12 Exercises

Ex. 14.1 Show that a strict contraction can have at most one fixed point.

Ex. 14.2 Let T be sc. Show that the sequence {T kx0} is a Cauchy se-
quence. Hint: Consider

||xk − xk+n|| ≤ ||xk − xk+1||+ ...+ ||xk+n−1 − xk+n||,

and use

||xk+m − xk+m+1|| ≤ rm||xk − xk+1||.

Operators 263

Since {xk} is a Cauchy sequence, it has a limit, say x̂. Let ek = x̂ − xk.
Show that {ek} → 0, as k → +∞, so that {xk} → x̂. Finally, show that
T x̂ = x̂.

Ex. 14.3 Suppose that we want to solve the equation

x =
1

2
e−x.

Let Tx = 1
2e
−x for x in R. Show that T is a strict contraction, when

restricted to nonnegative values of x, so that, provided we begin with x0 > 0,
the sequence {xk = Txk−1} converges to the unique solution of the equation.
Hint: Use the Mean Value Theorem 9.3.

Ex. 14.4 Prove Lemma 14.13.

Ex. 14.5 Prove Lemma 14.16.

Ex. 14.6 Show that, if the operator T is α-av and 1 > β > α, then T is
β-av.

Ex. 14.7 Prove Lemma 14.5.

Ex. 14.8 Prove Corollary 14.2.

Ex. 14.9 Prove Proposition 14.3.

Ex. 14.10 Show that, if B is a linear av operator, then |λ| < 1 for all
eigenvalues λ of B that are not equal to one.

Ex. 14.11 An operator Q : CJ → CJ is said to be quasi-nonexpansive
(qne) if Q has fixed points, and, for every fixed point z of Q and for every
x, we have

‖z − x‖ ≥ ‖z −Qx‖.

We say that an operator R : CJ → CJ is quasi-averaged if, for some
operator Q that is qne with respect to the two-norm and for some α in the
interval (0, 1), we have

R = (1− α)I + αQ.

Show that the KMO Theorem 14.2 holds when averaged operators are re-
placed by quasi-averaged operators.

This page intentionally left blankThis page intentionally left blank

Chapter 15

Looking Ahead

15.1 Chapter Summary . 265
15.2 Sequential Unconstrained Minimization . 265
15.3 Examples of SUM . 266

15.3.1 Barrier-Function Methods . 266
15.3.2 Penalty-Function Methods . 267

15.4 Auxiliary-Function Methods . 268
15.4.1 General AF Methods . 268
15.4.2 AF Requirements . 268

15.5 The SUMMA Class of AF Methods . 269

15.1 Chapter Summary

In this book we have only scratched the surface of optimization; we
have ignored entire branches of optimization, such as discrete optimization,
combinatorial optimization, stochastic optimization, and many others. The
companion volume [64] continues the discussion of optimization, this time
focusing on the use of iterative optimization methods in inverse problems.
The discussion there begins with constrained optimization and the use of
sequential unconstrained iterative algorithms. In this chapter we preview
some of the topics treated in greater detail in [64].

15.2 Sequential Unconstrained Minimization

Consider the problem of optimizing a real-valued function f over a
subset C of an arbitrary set X. There may well be no simple way to solve
this problem and iterative methods may be required. Many well known
iterative optimization methods can be described as sequential optimization
methods. In such methods we replace the original problem with a sequence
of simpler optimization problems, obtaining a sequence {xk} of members of

265

266 A First Course in Optimization

the set X. Our hope is that this sequence {xk} will converge to a solution of
the original problem, which, of course, will require a topology onX. We may
lower our expectations and ask only that the sequence {f(xk)} converge to
d = infx∈C f(x). Failing that, we may ask only that the sequence {f(xk)}
be nonincreasing. One way to design a sequential optimization algorithm
is to use auxiliary functions. At the kth step of the iteration we minimize
a function

Gk(x) = f(x) + gk(x),

to obtain xk.
In sequential unconstrained minimization (SUM) the auxiliary functions

gk(x) are selected to enforce the constraint that x be in C, as in barrier-
function methods, or to penalize violations of that constraint, such as in
penalty-function methods.

Auxiliary-function (AF) methods closely resemble SUM. In AF methods
certain restrictions are placed on the auxiliary functions gk(x) to control
the behavior of the sequence {f(xk)}. Even when there are no constraints,
the problem of minimizing a real-valued function may require iteration;
the formalism of AF minimization can be useful in deriving such iterative
algorithms, as well as in proving convergence. As originally formulated,
barrier- and penalty-function algorithms are not in the AF class, but can
be reformulated as AF algorithms.

In AF methods the auxiliary functions satisfy additional properties that
guarantee that the sequence {f(xk)} is nonincreasing. To have the sequence
{f(xk)} converging to d we need to impose an additional condition on
the gk(x), the SUMMA condition [56]. The SUMMA condition may seem
quite restrictive and ad hoc, and the resulting SUMMA class of algorithms
fairly limited, but this is not the case. Many of the best known iterative
optimization methods either are in the SUMMA class, or, like the barrier-
and penalty-function methods, can be reformulated as SUMMA algorithms.

15.3 Examples of SUM

Barrier-function algorithms and penalty-function algorithms are two of
the best known examples of SUM.

15.3.1 Barrier-Function Methods

Suppose that C ⊆ RJ and b : C → R is a barrier function for C, that
is, b has the property that b(x) → +∞ as x approaches the boundary of

Looking Ahead 267

C. At the kth step of the iteration we minimize

Bk(x) = f(x) +
1

k
b(x) (15.1)

to get xk. Then each xk is in C. We want the sequence {xk} to converge
to some x∗ in the closure of C that solves the original problem. Barrier-
function methods are interior-point methods because each xk satisfies the
constraints.

For example, suppose that we want to minimize the function f(x) =
f(x1, x2) = x21 + x22, subject to the constraint that x1 + x2 ≥ 1. The con-
straint is then written g(x1, x2) = 1−(x1+x2) ≤ 0. We use the logarithmic
barrier function b(x) = − log(x1 + x2 − 1). For each positive integer k, the
vector xk = (xk1 , x

k
2) minimizing the function

Bk(x) = x21 + x22 −
1

k
log(x1 + x2 − 1) = f(x) +

1

k
b(x)

has entries

xk1 = xk2 =
1

4
+

1

4

√
1 +

4

k
.

Notice that xk1 + xk2 > 1, so each xk satisfies the constraint. As k → +∞,
xk converges to (1

2 ,
1
2), which is the solution to the original problem. The

use of the logarithmic barrier function forces x1 + x2 − 1 to be positive,
thereby enforcing the constraint on x = (x1, x2).

15.3.2 Penalty-Function Methods

Again, our goal is to minimize a function f : RJ → R, subject to the
constraint that x ∈ C, where C is a nonempty closed subset of RJ . We
select a nonnegative function p : RJ → R with the property that p(x) = 0
if and only if x is in C and then, for each positive integer k, we minimize

Pk(x) = f(x) + kp(x),

to get xk. We then want the sequence {xk} to converge to some x∗ ∈ C
that solves the original problem. In order for this iterative algorithm to be
useful, each xk should be relatively easy to calculate.

If, for example, we should select p(x) = +∞ for x not in C and p(x) = 0
for x in C, then minimizing Pk(x) is equivalent to the original problem and
we have achieved nothing.

As an example, suppose that we want to minimize the function f(x) =
(x+ 1)2, subject to x ≥ 0. Let us select p(x) = x2, for x ≤ 0, and p(x) = 0
otherwise. Then xk = −1

k+1 , which converges to the right answer, x∗ = 0, as
k →∞.

268 A First Course in Optimization

15.4 Auxiliary-Function Methods

In this section we define auxiliary-function methods, establish their ba-
sic properties, and give several examples.

15.4.1 General AF Methods

Let C be a nonempty subset of an arbitrary set X, and f : X → R. We
want to minimize f(x) over x in C. At the kth step of an auxiliary-function
(AF) algorithm we minimize

Gk(x) = f(x) + gk(x)

over x ∈ C to obtain xk. Our main objective is to select the gk(x) so that the
infinite sequence {xk} generated by our algorithm converges to a solution
of the problem; this, of course, requires some topology on the set X. Failing
that, we want the sequence {f(xk)} to converge to d = inf{f(x)|x ∈ C}
or, at the very least, for the sequence {f(xk)} to be nonincreasing.

15.4.2 AF Requirements

For AF methods we require that the auxiliary functions gk(x) be chosen
so that gk(x) ≥ 0 for all x ∈ C and gk(xk−1) = 0. We then have the
following proposition.

Proposition 15.1 Let the sequence {xk} be generated by an AF algorithm.
Then the sequence {f(xk)} is nonincreasing, and, if d is finite, the sequence
{gk(xk)} converges to zero.

Proof: We have

f(xk) + gk(xk) = Gk(xk) ≤ Gk(xk−1) = f(xk−1) + gk(xk−1) = f(xk−1).

Therefore,
f(xk−1)− f(xk) ≥ gk(xk) ≥ 0.

Since the sequence {f(xk)} is decreasing and bounded below by d, the dif-
ference sequence must converge to zero, if d is finite; therefore, the sequence
{gk(xk)} converges to zero in this case.

The auxiliary functions used in Equation (15.1) do not have these prop-
erties but the barrier-function algorithm can be reformulated as an AF
method. The iterate xk obtained by minimizing Bk(x) in Equation (15.1)
also minimizes the function

Gk(x) = f(x) + [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)].

Looking Ahead 269

The auxiliary functions

gk(x) = [(k − 1)f(x) + b(x)]− [(k − 1)f(xk−1) + b(xk−1)]

now have the desired properties. In addition, we have Gk(x) − Gk(xk) =
gk+1(x) for all x ∈ C, which will become significant shortly.

As originally formulated, the penalty-function methods do not fit into
the class of AF methods we consider here. However, a reformulation of the
penalty-function approach, with p(x) and f(x) switching roles, permits the
penalty-function methods to be studied as barrier-function methods, and
therefore as acceptable AF methods.

15.5 The SUMMA Class of AF Methods

As we have seen, whenever the sequence {xk} is generated by an AF
algorithm, the sequence {f(xk)} is nonincreasing. We want more, however;
we want the sequence {f(xk)} to converge to d = infx∈C f(x). This happens
for those AF algorithms in the SUMMA class [56].

An AF algorithm is said to be in the SUMMA class if the auxiliary
functions gk(x) are chosen so that the SUMMA property holds; that is,

Gk(x)−Gk(xk) ≥ gk+1(x) ≥ 0, (15.2)

for all x ∈ C. As we saw previously, the reformulated barrier-function
method is in the SUMMA class. We have the following theorem.

Theorem 15.1 If the sequence {xk} is generated by an algorithm in the
SUMMA class, then the sequence {f(xk)} converges to d = infx∈C f(x).

Proof: Suppose that there is d∗ > d with f(xk) ≥ d∗, for all k. Then there
is z in C with

f(xk) ≥ d∗ > f(z) ≥ d,
for all k. Using the inequality (15.2) we have

gk(z)− gk+1(z) ≥ f(xk) + gk(xk)− f(z) ≥ f(xk)− f(z) ≥ d∗ − f(z) > 0.

This tells us that the nonnegative sequence {gk(z)} is decreasing, but that
successive differences remain bounded away from zero, which cannot hap-
pen.

A wide variety of well known iterative optimization algorithms either
are in the SUMMA class, or can be reformulated to be in this class. The
book [64] uses this fact as a unifying theme, with many of these algorithms
discussed in detail, under the umbrella of SUMMA.

This page intentionally left blankThis page intentionally left blank

Bibliography

[1] Albright, B. (2007) “An introduction to simulated annealing.” The
College Mathematics Journal, 38(1), pp. 37–42.

[2] Anderson, A., and Kak, A. (1984) “Simultaneous algebraic reconstruc-
tion technique (SART): A superior implementation of the ART algo-
rithm.” Ultrasonic Imaging, 6, pp. 81–94.

[3] Attouch, H. (1984) Variational Convergence for Functions and Oper-
ators. Boston: Pitman Advanced Publishing Program.

[4] Attouch, H., and Wets, R. (1989) “Epigraphical analysis.” Ann. Inst.
Poincare: Anal. Nonlineaire, 6, pp. 73–100.

[5] Aubin, J.-P., (1993) Optima and Equilibria: An Introduction to Non-
linear Analysis. Heidelberg, Germany: Springer-Verlag.

[6] Auslander, A., and Teboulle, M. (2006) “Interior gradient and prox-
imal methods for convex and conic optimization.” SIAM Journal on
Optimization, 16(3), pp. 697–725.

[7] Axelsson, O. (1994) Iterative Solution Methods. Cambridge, UK: Cam-
bridge University Press.

[8] Baillon, J.-B., Bruck, R.E., and Reich, S. (1978) “On the asymp-
totic behavior of nonexpansive mappings and semigroups in Banach
spaces.” Houston Journal of Mathematics, 4, pp. 1–9.

[9] Bauschke, H. (1996) “The approximation of fixed points of composi-
tions of nonexpansive mappings in Hilbert space.”Journal of Mathe-
matical Analysis and Applications, 202, pp. 150–159.

[10] Bauschke, H., and Borwein, J. (1993) “On the convergence of von
Neumann’s alternating projection algorithm for two sets.” Set-Valued
Analysis, 1, pp. 185–212.

[11] Bauschke, H., and Borwein, J. (1996) “On projection algorithms for
solving convex feasibility problems.” SIAM Review, 38(3), pp. 367–
426.

271

272 Bibliography

[12] Bauschke, H., and Borwein, J. (1997) “Legendre functions and the
method of random Bregman projections.” Journal of Convex Analysis,
4, pp. 27–67.

[13] Bauschke, H., and Borwein, J. (2001) “Joint and separate convexity of
the Bregman distance.” In Inherently Parallel Algorithms in Feasibil-
ity and Optimization and their Applications, edited by D. Butnariu,
Y. Censor and S. Reich, pp. 23–36, Studies in Computational Mathe-
matics 8. Amsterdam: Elsevier Publ.

[14] Bauschke, H., and Combettes, P. (2001) “A weak-to-strong conver-
gence principle for Fejér monotone methods in Hilbert spaces.” Math-
ematics of Operations Research, 26, pp. 248–264.

[15] Bauschke, H., and Combettes, P. (2003) “Iterating Bregman retrac-
tions.” SIAM Journal on Optimization, 13, pp. 1159–1173.

[16] Bauschke, H., Combettes, P., and Noll, D. (2006) “Joint minimization
with alternating Bregman proximity operators.” Pacific Journal of
Optimization, 2, pp. 401–424.

[17] Bauschke, H., and Lewis, A. (2000) “Dykstra’s algorithm with Breg-
man projections: A convergence proof.” Optimization, 48, pp. 409–
427.

[18] Becker, M., Yang, I., and Lange, K. (1997) “EM algorithms without
missing data.” Stat. Methods Med. Res., 6, pp. 38–54.

[19] Bertero, M., and Boccacci, P. (1998) Introduction to Inverse Problems
in Imaging. Bristol, UK: Institute of Physics Publishing.

[20] Bertsekas, D.P. (1997) “A new class of incremental gradient methods
for least squares problems.” SIAM J. Optim., 7, pp. 913–926.

[21] Bertsekas, D., and Tsitsiklis, J. (1989) Parallel and Distributed Com-
putation: Numerical Methods. Engelwood Cliffs, NJ: Prentice-Hall.

[22] Bliss, G.A. (1925) Calculus of Variations, Carus Mathematical Mono-
graphs. Providence, RI: American Mathematical Society.

[23] Borwein, J., and Lewis, A. (2000) Convex Analysis and Nonlinear
Optimization, Canadian Mathematical Society Books in Mathematics.
New York: Springer-Verlag.

[24] Boyd, S., and Vandenberghe, L. (2004) Convex Optimization. Cam-
bridge, UK: Cambridge University Press.

Bibliography 273

[25] Bregman, L.M. (1967) “The relaxation method of finding the common
point of convex sets and its application to the solution of problems in
convex programming.”USSR Computational Mathematics and Math-
ematical Physics, 7, pp. 200–217.

[26] Bregman, L., Censor, Y., and Reich, S. (1999) “Dykstra’s algorithm as
the nonlinear extension of Bregman’s optimization method.” Journal
of Convex Analysis, 6(2), pp. 319–333.

[27] Browne, J., and A. DePierro, A. (1996) “A row-action alternative to
the EM algorithm for maximizing likelihoods in emission tomography.”
IEEE Trans. Med. Imag., 15, pp. 687–699.

[28] Bruck, R.E., and Reich, S. (1977) “Nonexpansive projections and re-
solvents of accretive operators in Banach spaces.” Houston Journal of
Mathematics, 3, pp. 459–470.

[29] Bruckstein, A., Donoho, D., and Elad, M. (2009) “From sparse solu-
tions of systems of equations to sparse modeling of signals and images.”
SIAM Review, 51(1), pp. 34–81.

[30] Burden, R.L., and Faires, J.D. (1993) Numerical Analysis. Boston:
PWS-Kent.

[31] Butnariu, D., Byrne, C., and Censor, Y. (2003) “Redundant axioms
in the definition of Bregman functions.” Journal of Convex Analysis,
10, pp. 245–254.

[32] Byrne, C., and Fitzgerald, R. (1979) “A unifying model for spectrum
estimation.” In Proceedings of the RADC Workshop on Spectrum
Estimation, Griffiss AFB, Rome, NY, October.

[33] Byrne, C., and Fitzgerald, R. (1982) “Reconstruction from partial in-
formation, with applications to tomography.”SIAM J. Applied Math.,
42(4), pp. 933–940.

[34] Byrne, C., Fitzgerald, R., Fiddy, M., Hall, T., and Darling, A. (1983)
“Image restoration and resolution enhancement.”J. Opt. Soc. Amer.,
73, pp. 1481–1487.

[35] Byrne, C., and Fitzgerald, R. (1984) “Spectral estimators that extend
the maximum entropy and maximum likelihood methods.”SIAM J.
Applied Math., 44(2), pp. 425–442.

[36] Byrne, C., Levine, B.M., and Dainty, J.C. (1984) “Stable estimation
of the probability density function of intensity from photon frequency
counts.”JOSA Communications, 1(11), pp. 1132–1135.

274 Bibliography

[37] Byrne, C., and Fiddy, M. (1987) “Estimation of continuous object
distributions from Fourier magnitude measurements.” JOSA A, 4,
pp. 412–417.

[38] Byrne, C., and Fiddy, M. (1988) “Images as power spectra; recon-
struction as Wiener filter approximation.” Inverse Problems, 4, pp.
399–409.

[39] Byrne, C. (1993) “Iterative image reconstruction algorithms based on
cross-entropy minimization.”IEEE Transactions on Image Processing,
IP-2, pp. 96–103.

[40] Byrne, C. (1995) “Erratum and addendum to ‘Iterative image re-
construction algorithms based on cross-entropy minimization’.” IEEE
Transactions on Image Processing, IP-4, pp. 225–226.

[41] Byrne, C. (1996) “Iterative reconstruction algorithms based on cross-
entropy minimization.” In Image Models (and Their Speech Model
Cousins), S.E. Levinson and L. Shepp, editors, IMA Volumes in Mathe-
matics and Its Applications, Volume 80, pp. 1–11. New York: Springer-
Verlag.

[42] Byrne, C. (1996) “Block-iterative methods for image reconstruction
from projections.”IEEE Transactions on Image Processing, IP-5, pp.
792–794.

[43] Byrne, C. (1997) “Convergent block-iterative algorithms for image
reconstruction from inconsistent data.”IEEE Transactions on Image
Processing, IP-6, pp. 1296–1304.

[44] Byrne, C. (1998) “Accelerating the EMML algorithm and related it-
erative algorithms by rescaled block-iterative (RBI) methods.”IEEE
Transactions on Image Processing, IP-7, pp. 100–109.

[45] Byrne, C. (1998) “Iterative algorithms for deblurring and deconvolu-
tion with constraints.” Inverse Problems, 14, pp. 1455–1467.

[46] Byrne, C. (2000) “Block-iterative interior point optimization methods
for image reconstruction from limited data.” Inverse Problems, 16,
pp. 1405–1419.

[47] Byrne, C. (2001) “Bregman-Legendre multi-distance projection algo-
rithms for convex feasibility and optimization.” In Inherently Parallel
Algorithms in Feasibility and Optimization and their Applications,
edited by D. Butnariu, Y. Censor and S. Reich, pp. 87–100, Studies in
Computational Mathematics 8. Amsterdam: Elsevier Publ.

Bibliography 275

[48] Byrne, C. (2001) “Likelihood maximization for list-mode emission
tomographic image reconstruction.”IEEE Transactions on Medical
Imaging, 20(10), pp. 1084–1092.

[49] Byrne, C., and Censor, Y. (2001) “Proximity function minimization us-
ing multiple Bregman projections, with applications to split feasibility
and Kullback-Leibler distance minimization.” Annals of Operations
Research, 105, pp. 77–98.

[50] Byrne, C. (2002) “Iterative oblique projection onto convex sets and
the split feasibility problem.” Inverse Problems, 18, pp. 441–453.

[51] Byrne, C. (2004) “A unified treatment of some iterative algorithms
in signal processing and image reconstruction.” Inverse Problems, 20,
pp. 103–120.

[52] Byrne, C. (2005) “Choosing parameters in block-iterative or ordered-
subset reconstruction algorithms.” IEEE Transactions on Image Pro-
cessing, 14(3), pp. 321–327.

[53] Byrne, C. (2005) Signal Processing: A Mathematical Approach. Welles-
ley, MA: A K Peters.

[54] Byrne, C., and Ward, S. (2005) “Estimating the largest singular value
of a sparse matrix.” Unpublished notes.

[55] Byrne, C. (2007) Applied Iterative Methods. Wellesley, MA: A K Pe-
ters.

[56] Byrne, C. (2008) “Sequential unconstrained minimization algorithms
for constrained optimization.” Inverse Problems, 24(1), article no.
015013.

[57] Byrne, C. (2009) “Block-iterative algorithms.” International Transac-
tions in Operations Research, 16(4), pp. 427–463.

[58] Byrne, C. (2009) “Bounds on the largest singular value of a matrix
and the convergence of simultaneous and block-iterative algorithms
for sparse linear systems.” International Transactions in Operations
Research, 16(4), pp. 465–479.

[59] Byrne, C. (2009) Applied and Computational Linear Algebra:
A First Course, Available as a PDF file at my web site,
http://faculty.uml.edu/cbyrne/cbyrne.html.

[60] Byrne, C., and Eggermont, P. (2011) “EM Algorithms.” In Handbook
of Mathematical Methods in Imaging, Otmar Scherzer, ed., pp. 271–
344. Heidelberg, Germany: Springer-Science.

276 Bibliography

[61] Byrne, C., Censor, Y., A. Gibali, A., and Reich, S. (2012) “The split
common null point problem.” Journal of Nonlinear and Convex Anal-
ysis, 13, pp. 759–775.

[62] Byrne, C. (2012) “Alternating minimization as sequential uncon-
strained minimization: a survey.” Journal of Optimization Theory and
Applications, electronic 154(3), DOI 10.1007/s1090134-2, (2012), and
hardcopy 156(3), pp. 554–566.

[63] Byrne, C. (2014) “An elementary proof of convergence of the forward-
backward splitting algorithm.” Journal of Nonlinear and Convex
Analysis, 15(4), pp. 681–691.

[64] Byrne, C. (2014) Iterative Optimization in Inverse Problems. Boca
Raton, FL: CRC Press.

[65] Candès, E., Romberg, J., and Tao, T. (2006) “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete frequency
information.” IEEE Transactions on Information Theory, 52(2), pp.
489–509.

[66] Candès, E., and Romberg, J. (2007) “Sparsity and incoherence in com-
pressive sampling.” Inverse Problems, 23(3), pp. 969–985.

[67] Candès, E., Wakin, M., and Boyd, S. (2007) “Enhancing sparsity by
reweighted l1 minimization.” J. Fourier Anal. Appl., 14, pp. 877–905.

[68] Carlson, D., Johnson, C., Lay, D., and Porter, A.D. (2002) Linear
Algebra Gems: Assets for Undergraduates, The Mathematical Society
of America, MAA Notes 59.

[69] Censor, Y., Bortfeld, T., Martin, B., and Trofimov, A. (2006) “A uni-
fied approach for inversion problems in intensity-modulated radiation
therapy.” Physics in Medicine and Biology, 51, pp. 2353–2365.

[70] Censor, Y., Eggermont, P.P.B., and Gordon, D. (1983) “Strong
underrelaxation in Kaczmarz’s method for inconsistent sys-
tems.”Numerische Mathematik, 41, pp. 83–92.

[71] Censor, Y., and Elfving, T. (1994) “A multi-projection algorithm using
Bregman projections in a product space.” Numerical Algorithms, 8,
pp. 221–239.

[72] Censor, Y., Elfving, T., Herman, G.T., and Nikazad, T. (2008) “On
diagonally-relaxed orthogonal projection methods.” SIAM Journal on
Scientific Computation, 30(1), pp. 473–504.

Bibliography 277

[73] Censor, Y., Elfving, T., Kopf, N., and Bortfeld, T. (2005) “The
multiple-sets split feasibility problem and its application for inverse
problems.” Inverse Problems, 21, pp. 2071–2084.

[74] Censor, Y., Gibali, A., and Reich, S. (2011) “The subgradient extra-
gradient method for solving variational inequalities in Hilbert space.”
Journal of Optimization Theory and Applications, 148, pp. 318–335.

[75] Censor, Y., Gibali, A., and Reich, S. (2012) “Algorithms for the split
variational inequality problem.” Numerical Algorithms, 59, pp. 301–
323.

[76] Censor, Y., Gordon, D., and Gordon, R. (2001) “Component aver-
aging: An efficient iterative parallel algorithm for large and sparse
unstructured problems.” Parallel Computing, 27, pp. 777–808.

[77] Censor, Y., Gordon, D., and Gordon, R. (2001) “BICAV: A block-
iterative, parallel algorithm for sparse systems with pixel-related
weighting.” IEEE Transactions on Medical Imaging, 20, pp. 1050–
1060.

[78] Censor, Y., Iusem, A., and Zenios, S. (1998) “An interior point method
with Bregman functions for the variational inequality problem with
paramonotone operators.” Mathematical Programming, 81, pp. 373–
400.

[79] Censor, Y., and Reich, S. (1998) “The Dykstra algorithm for Bregman
projections.” Communications in Applied Analysis, 2, pp. 323–339.

[80] Censor, Y., and Reich, S. (1996) “Iterations of paracontractions and
firmly nonexpansive operators with applications to feasibility and op-
timization.” Optimization, 37, pp. 323–339.

[81] Censor, Y., and Segman, J. (1987) “On block-iterative maximization.”
J. of Information and Optimization Sciences, 8, pp. 275–291.

[82] Censor, Y., and Zenios, S.A. (1992) “Proximal minimization algorithm
with D-functions.” Journal of Optimization Theory and Applications,
73(3), pp. 451–464.

[83] Censor, Y., and Zenios, S.A. (1997) Parallel Optimization: Theory,
Algorithms and Applications. New York: Oxford University Press.

[84] Cheney, W., and Goldstein, A. (1959) “Proximity maps for convex
sets.” Proc. Amer. Math. Soc., 10, pp. 448–450.

[85] Cimmino, G. (1938) “Calcolo approssimato per soluzioni dei sistemi
di equazioni lineari.”La Ricerca Scientifica XVI, Series II, Anno IX, 1,
pp. 326–333.

278 Bibliography

[86] Combettes, P. (2001) “Quasi-Fejérian analysis of some optimization
algorithms.” Studies in Computational Mathematics, 8, pp. 115–152.

[87] Combettes, P. (2001) “Quasi-Fejérian analysis of some optimization
algorithms.” In Inherently Parallel Algorithms in Feasibility and Op-
timization and their Applications, edited by D. Butnariu, Y. Censor
and S. Reich, pp. 87–100, Studies in Computational Mathematics 8.
Amsterdam: Elsevier Publ.

[88] Combettes, P., and Wajs, V. (2005) “Signal recovery by proximal
forward-backward splitting.” Multiscale Modeling and Simulation,
4(4), pp. 1168–1200.

[89] Conn, A., Scheinberg, K., and Vicente, L. (2009) Introduction to
Derivative-Free Optimization, MPS-SIAM Series on Optimization.
Philadelphia: Society for Industrial and Applied Mathematics.

[90] Csiszár, I. (1975) “I-divergence geometry of probability distributions
and minimization problems.”The Annals of Probability, 3(1), pp. 146–
158.

[91] Csiszár, I. (1989) “A geometric interpretation of Darroch and Rat-
cliff’s generalized iterative scaling.”The Annals of Statistics, 17(3),
pp. 1409–1413.

[92] Csiszár, I., and Tusnády, G. (1984) “Information geometry and alter-
nating minimization procedures.”Statistics and Decisions, Supp. 1,
pp. 205–237.

[93] Darroch, J., and Ratcliff, D. (1972) “Generalized iterative scaling for
log-linear models.”Annals of Mathematical Statistics, 43, pp. 1470–
1480.

[94] Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977) “Maximum like-
lihood from incomplete data via the EM algorithm.”Journal of the
Royal Statistical Society, Series B, 37, pp. 1–38.

[95] De Pierro, A., and Iusem, A. (1990) “On the asymptotic behavior of
some alternate smoothing series expansion iterative methods.”Linear
Algebra and Its Applications, 130, pp. 3–24.

[96] Deutsch, F., and Yamada, I. (1998) “Minimizing certain convex func-
tions over the intersection of the fixed point sets of non-expansive
mappings.” Numerical Functional Analysis and Optimization, 19, pp.
33–56.

[97] Dines, K., and Lyttle, R. (1979) “Computerized geophysical tomogra-
phy.” Proc. IEEE, 67, pp. 1065–1073.

Bibliography 279

[98] Donoho, D. (2006) “Compressed sensing.” IEEE Transactions on In-
formation Theory, 52(4), pp. 1289–1306.

[99] Dorfman, R., Samuelson, P., and Solow, R. (1958) Linear Program-
ming and Economic Analysis. New York: McGraw-Hill.

[100] Driscoll, P., and Fox, W. (1996) “Presenting the Kuhn-Tucker condi-
tions using a geometric method.” The College Mathematics Journal,
38(1), pp. 101–108.

[101] Duffin, R., Peterson, E., and Zener, C. (1967) Geometric Program-
ming: Theory and Applications. New York: Wiley.

[102] Duda, R., Hart, P., and Stork, D. (2001) Pattern Classification. New
York: Wiley.

[103] Dugundji, J. (1970) Topology. Boston: Allyn and Bacon, Inc.

[104] Dykstra, R. (1983) “An algorithm for restricted least squares regres-
sion.” J. Amer. Statist. Assoc., 78 (384), pp. 837–842.

[105] Eggermont, P.P.B., Herman, G.T., and Lent, A. (1981) “Iterative
algorithms for large partitioned linear systems, with applications to
image reconstruction.” Linear Algebra and Its Applications, 40, pp.
37–67.

[106] Eggermont, P., and LaRiccia, V. (2001) Maximum Penalized Likeli-
hood Estimation. New York: Springer.

[107] Elsner, L., Koltracht, L., and Neumann, M. (1992) “Convergence of
sequential and asynchronous nonlinear paracontractions.” Numerische
Mathematik, 62, pp. 305–319.

[108] Facchinei, F., and Pang, J.S. (2003) Finite Dimensional Variational
Inequalities and Complementarity Problems, Volumes I and II. New
York: Springer-Verlag.

[109] Fang, S-C., and Puthenpura, S. (1993) Linear Optimization and Ex-
tensions: Theory and Algorithms. Englewood Cliffs, NJ: Prentice-Hall.

[110] Farkas, J. (1902) “Über die Theorie der einfachen Ungleichungen.”
J. Reine Angew. Math., 124, pp. 1–24.

[111] Farncombe, T. (2000) “Functional dynamic SPECT imaging using a
single slow camera rotation.” Ph.D. thesis, Dept. of Physics, Univer-
sity of British Columbia.

[112] Fiacco, A., and McCormick, G. (1990) Nonlinear Programming: Se-
quential Unconstrained Minimization Techniques, SIAM Classics in
Mathematics (reissue). Philadelphia, PA: SIAM.

280 Bibliography

[113] Fiddy, M. (2008) Private communication.

[114] Fleming, W. (1965) Functions of Several Variables. Reading, MA:
Addison-Wesley.

[115] Gale, D. (1960) The Theory of Linear Economic Models. New York:
McGraw-Hill.

[116] Geman, S., and Geman, D. (1984) “Stochastic relaxation, Gibbs dis-
tributions and the Bayesian restoration of images.”IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-6, pp. 721–741.

[117] Gill, P., Murray, W., Saunders, M., Tomlin, J., and Wright, M. (1986)
“On projected Newton barrier methods for linear programming and an
equivalence to Karmarkar’s projective method.” Mathematical Pro-
gramming, 36, pp. 183–209.

[118] Goebel, K., and Reich, S. (1984) Uniform Convexity, Hyperbolic Ge-
ometry, and Nonexpansive Mappings. New York: Dekker.

[119] Golshtein, E., and Tretyakov, N. (1996) Modified Lagrangians and
Monotone Maps in Optimization. New York: John Wiley and Sons,
Inc.

[120] Gordan, P. (1873) “Über die Auflösungen linearer Gleichungen mit
reelen Coefficienten.” Math. Ann., 6, pp. 23–28.

[121] Gordon, R., Bender, R., and Herman, G.T. (1970) “Algebraic recon-
struction techniques (ART) for three-dimensional electron microscopy
and x-ray photography.”J. Theoret. Biol., 29, pp. 471–481.

[122] Gordon, D., and Gordon, R.(2005) “Component-averaged row pro-
jections: A robust block-parallel scheme for sparse linear systems.”
SIAM Journal on Scientific Computing, 27, pp. 1092–1117.

[123] Gubin, L.G., Polyak, B.T. and Raik, E.V. (1967) “The method of
projections for finding the common point of convex sets.” USSR Com-
putational Mathematics and Mathematical Physics, 7, pp. 1–24.

[124] Hager, W. (1988) Applied Numerical Linear Algebra. Englewood
Cliffs, NJ: Prentice Hall.

[125] Hager, B., Clayton, R., Richards, M., Comer, R., and Dziewonsky,
A. (1985) “Lower mantle heterogeneity, dynamic typography and the
geoid.” Nature, 313, pp. 541–545.

[126] Herman, G. T. (1999) Private communication.

Bibliography 281

[127] Herman, G. T., and Meyer, L. (1993) “Algebraic reconstruction tech-
niques can be made computationally efficient.”IEEE Transactions on
Medical Imaging, 12, pp. 600–609.

[128] Hildreth, C. (1957) “A quadratic programming procedure.” Naval
Research Logistics Quarterly, 4, pp. 79–85. Erratum, ibid., p. 361.

[129] Hiriart-Urruty, J.-B., and Lemaréchal, C. (2001) Fundamentals of
Convex Analysis. Berlin: Springer.

[130] Holte, S., Schmidlin, P., Linden, A., Rosenqvist, G. and Eriksson,
L. (1990) “Iterative image reconstruction for positron emission to-
mography: a study of convergence and quantitation problems.”IEEE
Transactions on Nuclear Science, 37, pp. 629–635.

[131] Hudson, M., Hutton, B., and Larkin, R. (1992) “Accelerated EM
reconstruction using ordered subsets.” Journal of Nuclear Medicine,
33, p. 960.

[132] Hudson, H.M., and Larkin, R.S. (1994) “Accelerated image recon-
struction using ordered subsets of projection data.”IEEE Transactions
on Medical Imaging, 13, pp. 601–609.

[133] Jiang, M., and Wang, G. (2003) “Convergence studies on iterative
algorithms for image reconstruction.” IEEE Transactions on Medical
Imaging, 22(5), pp. 569–579.

[134] Kaczmarz, S. (1937) “Angenäherte Auflösung von Systemen linearer
Gleichungen.”Bulletin de l’Academie Polonaise des Sciences et Lettres,
A35, pp. 355–357.

[135] Kalman, D. (2009) “Leveling with Lagrange: An alternate view of
constrained optimization.” Mathematics Magazine, 82(3), pp. 186–
196.

[136] Karmarkar, N. (1984) “A new polynomial-time algorithm for linear
programming.” Combinatorica, 4, pp. 373–395.

[137] Kocay, W., and Kreher, D. (2004) Graphs, Algorithms, and Optimiza-
tion. Boca Raton, FL: CRC Press.

[138] Körner, T. (1996) The Pleasures of Counting. Cambridge, UK: Cam-
bridge University Press.

[139] Korpelevich, G. (1976) “The extragradient method for finding saddle
points and other problems.” Ekonomika i Matematcheskie Metody (in
Russian), 12, pp. 747–756.

282 Bibliography

[140] Krasnosel’skii, M. (1955) “Two observations on the method of se-
quential approximations.” Uspeki Mathematicheskoi Nauki (in Rus-
sian), 10(1), pp. 123–127.

[141] Kuhn, H., and Tucker, A. (eds.) (1956) Linear Inequalities and Re-
lated Systems. Annals of Mathematical Studies 38. Princeton, NJ:
Princeton University Press.

[142] Kullback, S., and Leibler, R. (1951) “On information and suffi-
ciency.”Annals of Mathematical Statistics, 22, pp. 79–86.

[143] Lagarias, J., Reeds, J., Wright, M., and Wright, P. (1998) “Conver-
gence properties of the Nelder-Mead simplex method in low dimen-
sions.” SIAM Journal of Optimization, 9(1), pp. 112–147.

[144] Landweber, L. (1951) “An iterative formula for Fredholm integral
equations of the first kind.”Amer. J. of Math., 73, pp. 615–624.

[145] Lange, K., and Carson, R. (1984) “EM reconstruction algorithms
for emission and transmission tomography.” Journal of Computer As-
sisted Tomography, 8, pp. 306–316.

[146] Lange, K., Bahn, M. and Little, R. (1987) “A theoretical study of
some maximum likelihood algorithms for emission and transmission
tomography.” IEEE Trans. Med. Imag., MI-6(2), pp. 106–114.

[147] Leahy, R. and Byrne, C. (2000) “Guest editorial: Recent development
in iterative image reconstruction for PET and SPECT.” IEEE Trans.
Med. Imag., 19, pp. 257–260.

[148] Lent, A., and Censor, Y. (1980) “Extensions of Hildreth’s row-action
method for quadratic programming.” SIAM Journal on Control and
Optimization, 18, pp. 444–454.

[149] Levy, A. (2009) The Basics of Practical Optimization. Philadelphia:
SIAM Publications.

[150] Lucet, Y. (2010) “What shape is your conjugate? A survey of compu-
tational convex analysis and its applications.” SIAM Review, 52(3),
pp. 505–542.

[151] Luenberger, D. (1969) Optimization by Vector Space Methods. New
York: John Wiley and Sons, Inc.

[152] Luo, Z., Ma, W., So, A., Ye, Y., and Zhang, S. (2010) “Semidefinite
relaxation of quadratic optimization problems.” IEEE Signal Process-
ing Magazine, 27(3), pp. 20–34.

Bibliography 283

[153] Mann, W. (1953) “Mean value methods in iteration.”Proc. Amer.
Math. Soc., 4, pp. 506–510.

[154] Marlow, W. (1978) Mathematics for Operations Research. New York:
John Wiley and Sons. Reissued in 1993 by Dover.

[155] Marzetta, T. (2003) “Reflection coefficient (Schur parameter) repre-
sentation for convex compact sets in the plane.” IEEE Transactions
on Signal Processing, 51(5), pp. 1196–1210.

[156] McKinnon, K. (1998) “Convergence of the Nelder-Mead simplex
method to a non-stationary point.” SIAM Journal on Optimization,
9(1), pp. 148–158.

[157] McLachlan, G.J., and Krishnan, T. (1997) The EM Algorithm and
Extensions. New York: John Wiley and Sons, Inc.

[158] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and
Teller, E. (1953) “Equation of state calculations by fast computing
machines.” J. Chem. Phys., 21, pp. 1087–1091.

[159] Moreau, J.-J. (1962) “Fonctions convexes duales et points proximaux
dans un espace hilbertien.” C.R. Acad. Sci. Paris Sér. A Math., 255,
pp. 2897–2899.

[160] Moreau, J.-J. (1963) “Propriétés des applications ‘prox’.” C.R. Acad.
Sci. Paris Sér. A Math., 256, pp. 1069–1071.

[161] Moreau, J.-J. (1965) “Proximité et dualité dans un espace hilbertien.”
Bull. Soc. Math. France, 93, pp. 273–299.

[162] Narayanan, M., Byrne, C., and King, M. (2001) “An interior point
iterative maximum-likelihood reconstruction algorithm incorporating
upper and lower bounds with application to SPECT transmission
imaging.” IEEE Transactions on Medical Imaging, TMI-20(4), pp.
342–353.

[163] Nasar, S. (1998) A Beautiful Mind. New York: Touchstone.

[164] Nash, S., and Sofer, A. (1996) Linear and Nonlinear Programming.
New York: McGraw-Hill.

[165] Nelder, J., and Mead, R. (1965) “A simplex method for function
minimization.” Computing Journal, 7, pp. 308–313.

[166] Nesterov, Y., and Nemirovski, A. (1994) Interior-Point Polynomial
Algorithms in Convex Programming, SIAM Studies in Applied Math-
ematics. Philadelphia, PA: SIAM.

284 Bibliography

[167] von Neumann, J., and Morgenstern, O. (1944) Theory of Games and
Economic Behavior. Princeton, NJ: Princeton University Press.

[168] Niven, I. (1981) Maxima and Minima Without Calculus. Washington,
D.C.: Mathematical Association of America.

[169] Noor, M.A. (1999) “Some algorithms for general monotone mixed
variational inequalities.” Mathematical and Computer Modelling, 29,
pp. 1–9.

[170] Noor, M.A. (2003) “Extragradient methods for pseudomonotone vari-
ational inequalities.” Journal of Optimization Theory and Applica-
tions, 117(3), pp. 475–488.

[171] Noor, M.A. (2004) “Some developments in general variational in-
equalities.” Applied Mathematics and Computation, 152, pp. 199–277.

[172] Noor, M.A. (2010) “On an implicit method for nonconvex variational
inequalities.” Journal of Optimization Theory and Applications, 147,
pp. 411–417.

[173] Opial, Z. (1967) “Weak convergence of the sequence of successive
approximations for nonexpansive mappings.” Bulletin of the American
Mathematical Society, 73, pp. 591–597.

[174] Ortega, J., and Rheinboldt, W. (2000) Iterative Solution of Nonlinear
Equations in Several Variables, Classics in Applied Mathematics 30.
Philadelphia, PA: SIAM.

[175] Papoulis, A. (1977) Signal Analysis. New York: McGraw-Hill.

[176] Peressini, A., Sullivan, F., and Uhl, J. (1988) The Mathematics of
Nonlinear Programming. New York: Springer-Verlag.

[177] Quinn, F. (2011) “A science-of-learning approach to mathematics
education.” Notices of the American Mathematical Society, 58, pp.
1264–1275; see also http://www.math.vt.edu/people/quinn/.

[178] Reich, S. (1979) “Weak convergence theorems for nonexpansive map-
pings in Banach spaces.” Journal of Mathematical Analysis and Ap-
plications, 67, pp. 274–276.

[179] Reich, S. (1980) “Strong convergence theorems for resolvents of accre-
tive operators in Banach spaces.” Journal of Mathematical Analysis
and Applications, pp. 287–292.

[180] Reich, S. (1996) “A weak convergence theorem for the alternating
method with Bregman distances.” In Theory and Applications of Non-
linear Operators, pp. 313–318. New York: Marcel Dekker.

Bibliography 285

[181] Renegar, J. (2001) A Mathematical View of Interior-Point Methods
in Convex Optimization, MPS-SIAM Series on Optimization. Philadel-
phia, PA: SIAM.

[182] Rockafellar, R. (1970) Convex Analysis. Princeton, NJ: Princeton
University Press.

[183] Rockmore, A., and Macovski, A. (1976) “A maximum likelihood
approach to emission image reconstruction from projections.” IEEE
Transactions on Nuclear Science, NS-23, pp. 1428–1432.

[184] Schelling, T. (1980) The Strategy of Conflict. Cambridge, MA: Har-
vard University Press.

[185] Schmidlin, P. (1972) “Iterative separation of sections in tomographic
scintigrams.” Nuklearmedizin, 11, pp. 1–16.

[186] Schroeder, M. (1991) Fractals, Chaos, Power Laws. New York: W. H.
Freeman.

[187] Shepp, L., and Vardi, Y. (1982) “Maximum likelihood reconstruction
for emission tomography.” IEEE Transactions on Medical Imaging,
MI-1, pp. 113–122.

[188] Shermer, M. (2008) “The Doping Dilemma.” Scientific American,
April 2008, pp. 82–89.

[189] Shieh, M., Byrne, C., and Fiddy, M. (2006) “Image reconstruction:
A unifying model for resolution enhancement and data extrapolation:
Tutorial.” Journal of the Optical Society of America, A, 23(2), pp.
258–266.

[190] Shieh, M., Byrne, C., Testorf, M., and Fiddy, M. (2006) “Iterative
image reconstruction using prior knowledge.” Journal of the Optical
Society of America, A, 23(6), pp. 1292–1300.

[191] Shieh, M., and Byrne, C. (2006) “Image reconstruction from limited
Fourier data.” Journal of the Optical Society of America, A, 23(11),
pp. 2732–2736.

[192] Simmons, G. (1972) Differential Equations, with Applications and
Historical Notes. New York: McGraw-Hill.

[193] Stevens, S. (2008) Games People Play. A course on DVD available
from The Teaching Company, www.TEACH12.com.

[194] Stiemke, E. (1915) “Über positive Lösungen homogener linearer Gle-
ichungen.” Math. Ann, 76, pp. 340–342.

286 Bibliography

[195] Tanabe, K. (1971) “Projection method for solving a singular system
of linear equations and its applications.”Numer. Math., 17, pp. 203–
214.

[196] Teboulle, M. (1992) “Entropic proximal mappings with applications
to nonlinear programming.” Mathematics of Operations Research,
17(3), pp. 670–690.

[197] Tucker, A. (1956) “Dual systems of homogeneous linear relations.”
In [141], pp. 3–18.

[198] van der Sluis, A. (1969) “Condition numbers and equilibration of
matrices.” Numer. Math., 14, pp. 14–23.

[199] van der Sluis, A., and van der Vorst, H.A. (1990) “SIRT- and CG-
type methods for the iterative solution of sparse linear least-squares
problems.” Linear Algebra and Its Applications, 130, pp. 257–302.

[200] Vardi, Y., Shepp, L.A., and Kaufman, L. (1985) “A statistical model
for positron emission tomography.” Journal of the American Statisti-
cal Association, 80, pp. 8–20.

[201] Woeginger, G. (2009) “When Cauchy and Hölder met Minkowski.”
Mathematics Magazine, 82(3), pp. 202–207.

[202] Wright, M. (2005) “The interior-point revolution in optimization:
History, recent developments, and lasting consequences.” Bulletin
(New Series) of the American Mathematical Society, 42(1), pp. 39–56.

[203] Wright, M. (2009) “The dual flow between linear algebra and op-
timization.” Talk given at the History of Numerical Linear Algebra
Minisymposium – Part II, SIAM Conference on Applied Linear Alge-
bra, Monterey, CA, October 28.

[204] Yang, Q. (2004) “The relaxed CQ algorithm solving the split feasi-
bility problem.” Inverse Problems, 20, pp. 1261–1266.

This page intentionally left blankThis page intentionally left blank

A First Course in Optimization teaches the basics of continuous optimiza-
tion and helps readers better understand the mathematics from previous
courses. It gives readers the proper groundwork for future studies in opti-
mization.

The book focuses on general problems and the underlying theory. It
introduces all the necessary mathematical tools and results. The text covers
the fundamental problems of constrained and unconstrained optimization
as well as linear and convex programming. It also presents basic iterative
solution algorithms (such as gradient methods and the Newton–Raphson
algorithm and its variants) and more general iterative optimization methods.

Features
• Explains how to find exact and approximate solutions to systems of

linear equations
• Shows how to use linear programming techniques, iterative methods,

and specialized algorithms in various applications
• Discusses the importance of speeding up convergence
• Presents the necessary mathematical tools and results to provide the

proper foundation
• Prepares readers to understand how iterative optimization methods are

used in inverse problems

This text builds the foundation to understand continuous optimization. It
prepares readers to study advanced topics found in the author’s companion
book, Iterative Optimization in Inverse Problems, including sequential un-
constrained iterative optimization methods.

K22492

Mathematics

A First Course
in

Optimization

A
 First C

ourse in O
ptim

ization

Charles L. Byrne

Byrne

K22492_cover.indd 1 6/25/14 4:30 PM

	Cover
	S Title
	A First Course in Optimization
	© 2015 by Taylor & Francis Group, LLC
	ISBN 978-1-4822-2658-4 (eBook - PDF)

	Dedication
	Contents
	Preface
	Overview
	1. Optimization Without Calculus
	1.1 Chapter Summary
	1.2 The Arithmetic Mean-Geometric Mean Inequality
	1.3 Applying the AGM Inequality: the Number e
	1.4 Extending the AGM Inequality
	1.5 Optimization Using the AGM Inequality
	1.6 The HŁolder and Minkowski Inequalities
	1.6.1 HŁolder's Inequality
	1.6.2 Minkowski's Inequality

	1.7 Cauchy's Inequality
	1.8 Optimizing Using Cauchy's Inequality
	1.9 An Inner Product for Square Matrices
	1.10 Discrete Allocation Problems
	1.11 Exercises

	2. Geometric Programming
	2.1 Chapter Summary
	2.2 An Example of a GP Problem
	2.3 Posynomials and the GP Problem
	2.4 The Dual GP Problem
	2.5 Solving the GP Problem
	2.6 Solving the DGP Problem
	2.6.1 The MART
	2.6.2 MART I
	2.6.3 MART II
	2.6.4 Using the MART to Solve the DGP Problem

	2.7 Constrained Geometric Programming
	2.8 Exercises

	3. Basic Analysis
	3.1 Chapter Summary
	3.2 Minima and In�ma
	3.3 Limits
	3.4 Completeness
	3.5 Continuity
	3.6 Limsup and Liminf
	3.7 Another View
	3.8 Semi-Continuity
	3.9 Exercises

	4. Convex Sets
	4.1 Chapter Summary
	4.2 The Geometry of Real Euclidean Space
	4.2.1 Inner Products
	4.2.2 Cauchy's Inequality
	4.2.3 Other Norms

	4.3 A Bit of Topology
	4.4 Convex Sets in RJ
	4.4.1 Basic De�nitions
	4.4.2 Orthogonal Projection onto Convex Sets

	4.5 More on Projections
	4.6 Linear and A�ne Operators on RJ
	4.7 The Fundamental Theorems
	4.7.1 Basic De�nitions
	4.7.2 The Separation Theorem
	4.7.3 The Support Theorem

	4.8 Block-Matrix Notation
	4.9 Theorems of the Alternative
	4.10 Another Proof of Farkas' Lemma
	4.11 Gordan's Theorem Revisited
	4.12 Exercises

	5. Vector Spaces and Matrices
	5.1 Chapter Summary
	5.2 Vector Spaces
	5.3 Basic Linear Algebra
	5.3.1 Bases and Dimension
	5.3.2 The Rank of a Matrix
	5.3.3 The \Matrix Inversion Theorem
	5.3.4 Systems of Linear Equations
	5.3.5 Real and Complex Systems of Linear Equations

	5.4 LU and QR Factorization
	5.5 The LU Factorization
	5.5.1 A Shortcut
	5.5.2 A Warning!
	5.5.3 The QR Factorization and Least Squares

	5.6 Exercises

	6. Linear Programming
	6.1 Chapter Summary
	6.2 Primal and Dual Problems
	6.2.1 An Example
	6.2.2 Canonical and Standard Forms
	6.2.3 From Canonical to Standard and Back

	6.3 Converting a Problem to PS Form
	6.4 Duality Theorems
	6.4.1 Weak Duality
	6.4.2 Primal-Dual Methods
	6.4.3 Strong Duality

	6.5 A Basic Strong Duality Theorem
	6.6 Another Proof
	6.7 Proof of Gale's Strong Duality Theorem
	6.8 Some Examples
	6.8.1 The Diet Problem
	6.8.2 The Transport Problem

	6.9 The Simplex Method
	6.10 Yet Another Proof
	6.11 The Sherman{Morrison{Woodbury Identity
	6.12 An Example of the Simplex Method
	6.13 Another Example
	6.14 Some Possible Di�culties
	6.14.1 A Third Example
	6.15 Topics for Projects

	6.16 Exercises

	7. Matrix Games and Optimization
	7.1 Chapter Summary
	7.2 Two-Person Zero-Sum Games
	7.3 Deterministic Solutions
	7.3.1 Optimal Pure Strategies

	7.4 Randomized Solutions
	7.4.1 Optimal Randomized Strategies
	7.4.2 An Exercise
	7.4.3 The Min-Max Theorem

	7.5 Symmetric Games
	7.5.1 An Example of a Symmetric Game
	7.5.2 Comments on the Proof of the Min-Max Theorem

	7.6 Positive Games
	7.6.1 Some Exercises
	7.6.2 Comments

	7.7 Example: The \Blu�ng" Game
	7.8 Learning the Game
	7.8.1 An Iterative Approach
	7.8.2 An Exercise

	7.9 Non-Constant-Sum Games
	7.9.1 The Prisoners' Dilemma
	7.9.2 Two Payo� Matrices Needed
	7.9.3 An Example: Illegal Drugs in Sports

	8. Differentiation
	8.1 Chapter Summary
	8.2 Directional Derivative
	8.2.1 De�nitions

	8.3 Partial Derivatives
	8.4 Some Examples
	8.5 G^ateaux Derivative
	8.6 Fr�echet Derivative
	8.6.1 The De�nition
	8.6.2 Properties of the Fr echet Derivative

	8.7 The Chain Rule
	8.8 Exercises

	9. Convex Functions
	9.1 Chapter Summary
	9.2 Functions of a Single Real Variable
	9.2.1 Fundamental Theorems
	9.2.2 Proof of Rolle's Theorem
	9.2.3 Proof of the Mean Value Theorem
	9.2.4 A Proof of the MVT for Integrals
	9.2.5 Two Proofs of the EMVT
	9.2.6 Lipschitz Continuity
	9.2.7 The Convex Case

	9.3 Functions of Several Real Variables
	9.3.1 Continuity
	9.3.2 Di�erentiability
	9.3.3 Second Di�erentiability
	9.3.4 Finding Maxima and Minima
	9.3.5 Solving F(x) = 0 through Optimization
	9.3.6 When Is F(x) a Gradient?
	9.3.7 Lower Semi-Continuity
	9.3.8 The Convex Case

	9.4 Sub-Di�erentials and Sub-Gradients
	9.5 Sub-Gradients and Directional Derivatives
	9.5.1 Some De�nitions
	9.5.2 Sub-Linearity
	9.5.3 Sub-Di�erentials and Directional Derivatives
	9.5.4 An Example

	9.6 Functions and Operators
	9.7 Convex Sets and Convex Functions
	9.8 Exercises

	10. Convex Programming
	10.1 Chapter Summary
	10.2 The Primal Problem
	10.2.1 The Perturbed Problem
	10.2.2 The Sensitivity Vector and the Lagrangian

	10.3 From Constrained to Unconstrained
	10.4 Saddle Points
	10.4.1 The Primal and Dual Problems
	10.4.2 The Main Theorem
	10.4.3 A Duality Approach to Optimization

	10.5 The Karush{Kuhn{Tucker Theorem
	10.5.1 Su�cient Conditions
	10.5.2 The KKT Theorem: Saddle-Point Form
	10.5.3 The KKT Theorem: The Gradient Form

	10.6 On Existence of Lagrange Multipliers
	10.7 The Problem of Equality Constraints
	10.7.1 The Problem
	10.7.2 The KKT Theorem for Mixed Constraints
	10.7.3 The KKT Theorem for LP
	10.7.4 The Lagrangian Fallacy

	10.8 Two Examples
	10.8.1 A Linear Programming Problem
	10.8.2 A Nonlinear Convex Programming Problem

	10.9 The Dual Problem
	10.9.1 When Is MP = MD?
	10.9.2 The Primal-Dual Method
	10.9.3 Using the KKT Theorem

	10.10 Nonnegative Least-Squares Solutions
	10.11 An Example in Image Reconstruction
	10.12 Solving the Dual Problem
	10.12.1 The Primal and Dual Problems
	10.12.2 Hildreth’s Dual Algorithm

	10.13 Minimum One-Norm Solutions
	10.13.1 Reformulation as an LP Problem
	10.13.2 Image Reconstruction

	10.14 Exercises

	11. Iterative Optimization
	11.1 Chapter Summary
	11.2 The Need for Iterative Methods
	11.3 Optimizing Functions of a Single Real Variable
	11.4 Iteration and Operators
	11.5 The Newton{Raphson Approach
	11.5.1 Functions of a Single Variable
	11.5.2 Functions of Several Variables

	11.6 Approximate Newton{Raphson Methods
	11.6.1 Avoiding the Hessian Matrix
	11.6.2 The BFGS Method
	11.6.3 The Broyden Class
	11.6.4 Avoiding the Gradient

	11.7 Derivative-Free Methods
	11.7.1 Multi-Directional Search Algorithms
	11.7.2 The Nelder{Mead Algorithm
	11.7.3 Comments on the Nelder{Mead Algorithm

	12. Solving Systems of Linear Equations
	12.1 Chapter Summary
	12.2 Arbitrary Systems of Linear Equations
	12.2.1 Under-Determined Systems of Linear Equations
	12.2.2 Over-Determined Systems of Linear Equations
	12.2.3 Landweber's Method
	12.2.4 The Projected Landweber Algorithm
	12.2.5 The Split-Feasibility Problem
	12.2.6 An Extension of the CQ Algorithm
	12.2.7 The Algebraic Reconstruction Technique
	12.2.8 Double ART

	12.3 Regularization
	12.3.1 Norm-Constrained Least-Squares
	12.3.2 Regularizing Landweber's Algorithm
	12.3.3 Regularizing the ART

	12.4 Nonnegative Systems of Linear Equations
	12.4.1 The Multiplicative ART
	12.4.2 MART I
	12.4.3 MART II
	12.4.4 The Simultaneous MART
	12.4.5 The EMML Iteration
	12.4.6 Alternating Minimization
	12.4.7 The Row-Action Variant of EMML
	12.4.8 EMART I
	12.4.9 EMART II

	12.5 Regularized SMART and EMML
	12.5.1 Regularized SMART
	12.5.2 Regularized EMML

	12.6 Block-Iterative Methods
	12.7 Exercises

	13. Conjugate-Direction Methods
	13.1 Chapter Summary
	13.2 Iterative Minimization
	13.3 Quadratic Optimization
	13.4 Conjugate Bases for RJ
	13.4.1 Conjugate Directions
	13.4.2 The Gram{Schmidt Method

	13.5 The Conjugate Gradient Method
	13.5.1 The Main Idea
	13.5.2 A Recursive Formula

	13.6 Krylov Subspaces
	13.7 Extensions of the CGM
	13.8 Exercises

	14. Operators
	14.1 Chapter Summary
	14.2 Operators
	14.3 Contraction Operators
	14.3.1 Lipschitz-Continuous Operators
	14.3.2 Nonexpansive Operators
	14.3.3 Strict Contractions
	14.3.4 Eventual Strict Contractions
	14.3.5 Instability

	14.4 Orthogonal-Projection Operators
	14.4.1 Properties of the Operator PC
	14.4.2 PC Is Nonexpansive
	14.4.3 PC Is Firmly Nonexpansive
	14.4.4 The Search for Other Properties of PC

	14.5 Two Useful Identities
	14.6 Averaged Operators
	14.7 Gradient Operators
	14.8 The Krasnosel'skii{Mann{Opial Theorem
	14.9 A�ne-Linear Operators
	14.10 Paracontractive Operators
	14.10.1 Linear and A�ne Paracontractions
	14.10.2 The Elsner{Koltracht{Neumann Theorem

	14.11 Matrix Norms
	14.11.1 Induced Matrix Norms
	14.11.2 Condition Number of a Square Matrix
	14.11.3 Some Examples of Induced Matrix Norms
	14.11.4 The Euclidean Norm of a Square Matrix

	14.12 Exercises

	15. Looking Ahead
	15.1 Chapter Summary
	15.2 Sequential Unconstrained Minimization
	15.3 Examples of SUM
	15.3.1 Barrier-Function Methods
	15.3.2 Penalty-Function Methods

	15.4 Auxiliary-Function Methods
	15.4.1 General AF Methods
	15.4.2 AF Requirements

	15.5 The SUMMA Class of AF Methods

	Bibliography
	Back Cover

