Exercises on Linear Algebra

Exercise 1. Given the linear system

$$
\left\{\begin{array}{l}
-5 x+k y+z=2 \\
7 x+y-6 z=-8 \\
-3 x-7 y+k z=k
\end{array}\right.
$$

1) determine the number of solutions for every value of k;
2) determine the explicit solutions for every value of k.

Exercise 2. Given the linear system

$$
\left\{\begin{array}{l}
-3 y+k x=k-7 x \\
4 x+2 k y-3 k=5-4 y
\end{array}\right.
$$

1) determine the number of solutions for every value of k;
2) determine the explicit solutions for every value of k.

Exercise 3. Check whether the following set \mathcal{I} of three vectors belonging to the vector space \mathbb{R}^{4} is linearly dependent or linearly independent

$$
\mathcal{I}=\left\{\boldsymbol{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
-1 \\
2
\end{array}\right), \boldsymbol{v}_{2}=\left(\begin{array}{l}
2 \\
-3 \\
-2 \\
3
\end{array}\right), \boldsymbol{v}_{3}=\left(\begin{array}{l}
0 \\
3 \\
4 \\
-3
\end{array}\right)\right\}
$$

and if the set would be linearly dependent, write a vector as linear combination of two vectors.

Exercise 4. Check whether the following set \mathcal{I} of three vectors belonging to the vector space \mathbb{R}^{4} is linearly dependent or linearly independent

$$
\mathcal{I}=\left\{\boldsymbol{v}_{1}=\left(\begin{array}{l}
2 \\
-1 \\
0 \\
3
\end{array}\right), \boldsymbol{v}_{2}=\left(\begin{array}{l}
5 \\
3 \\
1 \\
8
\end{array}\right), \boldsymbol{v}_{3}=\left(\begin{array}{l}
1 \\
5 \\
1 \\
2
\end{array}\right)\right\}
$$

and if the set would be linearly dependent, write a vector as linear combination of two vectors.

Exercise 5. Verify whether the following set S of \mathbb{R}^{3} is a vector subspace or not

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \text { such that } 2 x-y=0\right\} .
$$

If it is, find its dimension and a basis.

Exercise 6. Find the rank of the following set \mathcal{J} of four vectors

$$
\mathcal{J}=\left\{\boldsymbol{v}_{1}=\left(\begin{array}{l}
2 \\
-1 \\
0 \\
3
\end{array}\right), \boldsymbol{v}_{2}=\left(\begin{array}{l}
-3 \\
-4 \\
-1 \\
-5
\end{array}\right), \boldsymbol{v}_{3}=\left(\begin{array}{l}
1 \\
5 \\
1 \\
2
\end{array}\right), \boldsymbol{v}_{4}=\left(\begin{array}{l}
0 \\
1 \\
-1 \\
3
\end{array}\right)\right\}
$$

and if the rank of the set would be less than 4 , find a linearly independent set \mathcal{J}_{1} which is a proper subset of \mathcal{J} such that \mathcal{J}_{1} has as many vectors as the rank is.

Exercise 7. Find the subspace intersection of the two subspaces \mathcal{U}, \mathcal{W} of \mathbb{R}^{5} spanned by its own basis vectors

$$
\begin{aligned}
& \mathcal{U}=\left\{\begin{array}{l}
\left.\boldsymbol{u}_{1}=\left(\begin{array}{c}
2 \\
-3 \\
0 \\
1 \\
1
\end{array}\right), \quad \boldsymbol{u}_{2}=\left(\begin{array}{c}
3 \\
0 \\
2 \\
1 \\
-2
\end{array}\right), \quad \boldsymbol{u}_{3}=\left(\begin{array}{c}
-2 \\
1 \\
-4 \\
-1 \\
0
\end{array}\right)\right\} \\
\mathcal{W}=\left\{\boldsymbol{w}_{1}=\left(\begin{array}{c}
0 \\
1 \\
-3 \\
2 \\
0
\end{array}\right), \quad \boldsymbol{w}_{2}=\left(\begin{array}{c}
5 \\
2 \\
-2 \\
1 \\
-6
\end{array}\right)\right\}
\end{array} .\left\{\begin{array}{l}
\end{array}\right) .\right.
\end{aligned}
$$

Solution of the exercise 7.

First method. If we write the generic vector of the subspaces in the parametric form of linear combination of the basis vectors, we have

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\alpha_{1} \boldsymbol{u}_{1}+\alpha_{2} \boldsymbol{u}_{2}+\alpha_{3} \boldsymbol{u}_{3}=\alpha_{1}\left(\begin{array}{c}
2 \\
-3 \\
0 \\
1 \\
1
\end{array}\right)+\alpha_{2}\left(\begin{array}{c}
3 \\
0 \\
2 \\
1 \\
-2
\end{array}\right)+\alpha_{3}\left(\begin{array}{c}
-2 \\
1 \\
-4 \\
-1 \\
0
\end{array}\right)
$$

and

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right)=\beta_{1} \boldsymbol{w}_{1}+\beta_{2} \boldsymbol{w}_{2}=\beta_{1}\left(\begin{array}{c}
0 \\
1 \\
-3 \\
2 \\
0
\end{array}\right)+\beta_{2}\left(\begin{array}{c}
5 \\
2 \\
-2 \\
1 \\
-6
\end{array}\right) .
$$

The subspace intersection of \mathcal{U}, \mathcal{W} consists of the vectors belonging to both subspaces, simultaneously, and is then spanned by those vectors such that the following equality holds

$$
\alpha_{1}\left(\begin{array}{c}
2 \\
-3 \\
0 \\
1 \\
1
\end{array}\right)+\alpha_{2}\left(\begin{array}{c}
3 \\
0 \\
2 \\
1 \\
-2
\end{array}\right)+\alpha_{3}\left(\begin{array}{c}
-2 \\
1 \\
-4 \\
-1 \\
0
\end{array}\right)=\beta_{1}\left(\begin{array}{c}
0 \\
1 \\
-3 \\
2 \\
0
\end{array}\right)+\beta_{2}\left(\begin{array}{c}
5 \\
2 \\
-2 \\
1 \\
-6
\end{array}\right),
$$

that is

$$
\left\{\begin{array}{l}
2 \alpha_{1}+3 \alpha_{2}-2 \alpha_{3}-5 \beta_{2}=0 \\
-3 \alpha_{1}+\alpha_{3}-\beta_{1}-2 \beta_{2}=0 \\
2 \alpha_{2}-4 \alpha_{3}+3 \beta_{1}+2 \beta_{2}=0 \\
\alpha_{1}+\alpha_{2}-\alpha_{3}-2 \beta_{1}-\beta_{2}=0 \\
\alpha_{1}-2 \alpha_{2}+6 \beta_{2}=0
\end{array}\right.
$$

If this homogeneous system has unique solution, that is the trivial solution, this means that the subspace intersection of \mathcal{U}, \mathcal{W} consists of the null vector, only. If the solution of this homogeneous system are ∞^{d}, this means that the dimension of the subspace intersection of \mathcal{U}, \mathcal{W} is d, and I leave to the reader as a simple exercise to find the parametric and cartesian forms of the subspace intersection of \mathcal{U}, \mathcal{W}.

