MATHEMATICS FOR FINANCE Exam

January 2024, the 16th

Surname

ID Number

Name
\qquad

Exercise 1. Given the canonical basis $\mathcal{B}_{\mathbb{R}^{4}}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right\}$ of the vector spaces \mathbb{R}^{4}, and the linear application $L: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ acting on the basis vectors of \mathbb{R}^{4} according the transformation laws

$$
\left\{\begin{array}{l}
L\left(\boldsymbol{e}_{1}\right)=2 \boldsymbol{e}_{1}-\boldsymbol{e}_{2}-\boldsymbol{e}_{3}+5 \boldsymbol{e}_{4} \\
L\left(\boldsymbol{e}_{2}\right)=\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{4} \\
L\left(\boldsymbol{e}_{3}\right)=2 \boldsymbol{e}_{1}+4 \boldsymbol{e}_{4} \\
L\left(\boldsymbol{e}_{4}\right)=2 \boldsymbol{e}_{1}-\boldsymbol{e}_{2}-\boldsymbol{e}_{3}+5 \boldsymbol{e}_{4}
\end{array}\right.
$$

1) write the matrix A associated to the linear application L with respect to the given basis;
2) find the subspaces kernel and image of the linear application L determining their dimension and a basis for both subspaces;
3) find the orthogonal projection of the vector $\boldsymbol{u}=(-2,1,1,1)$ on the subspace image of L.

Let us consider the linear application $\tilde{L}: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ defined by the transformation laws of the components

$$
\tilde{L}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{3}, x_{2}-x_{3}, x_{1}-x_{4},-x_{1}\right)
$$

where in the vector space \mathbb{R}^{4} the same basis $\mathcal{B}_{\mathbb{R}^{4}}$ is fixed as before.
4) Write the matrix B associated to the linear application \tilde{L} with respect to the given basis and determine the matrix, denoted by M, associated to the composition of linear applications $L \circ \tilde{L}$ (matrix product $A B$).
5) Verify whether the matrix M is diagonalizable.

If M is diagonalizable,
6) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by \mathcal{D} and write the matrix C of the basis change such that $C^{-1} M C=\mathcal{D}$;
7) write the diagonal matrix \mathcal{D} (without performing the matrix multiplication $C^{-1} M C$);
8) in the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2 , find an eingenvector \boldsymbol{v} of M which is orthogonal to the vector $\boldsymbol{w}=(0,0,2,1)$;
9) find a basis of the subspace orthogonal complement of the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2.

Exercise 2. Solve the following Cauchy problem

$$
\left\{\begin{array}{l}
4 y^{\prime \prime}(x)+4 y^{\prime}(x)+y(x)=3 e^{-x / 2} \\
y(0)=-2 \\
y^{\prime}(0)=2
\end{array}\right.
$$

Exercise 3. Find the optimal points of the function

$$
f(x, y, z)=x+2 y-3 z
$$

subject to the constraint $2 x^{2}+y^{2}-z^{2}+x+z=-3$

Solution of the exam of the day January 2024, the 16th

Exercise 1.

1) The matrix A is

$$
A=\left(\begin{array}{cccc}
2 & 1 & 2 & 2 \\
-1 & 1 & 0 & -1 \\
-1 & 0 & 0 & -1 \\
5 & 1 & 4 & 5
\end{array}\right)
$$

obtained by writing in columns the coefficients of

$$
2 \boldsymbol{e}_{1}-\boldsymbol{e}_{2}-e_{3}+5 e_{4}, \quad \boldsymbol{e}_{1}+e_{2}+e_{4}, \quad 2 \boldsymbol{e}_{1}+4 \boldsymbol{e}_{4}, \quad 2 \boldsymbol{e}_{1}-\boldsymbol{e}_{2}-\boldsymbol{e}_{3}+5 \boldsymbol{e}_{4} .
$$

2) The kernel of L is the subspace of \mathbb{R}^{4} containing the vectors $\boldsymbol{k}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ such that the equality $L(\boldsymbol{k})=\mathbf{0}$ holds, that is

$$
\left(\begin{array}{cccc}
2 & 1 & 2 & 2 \\
-1 & 1 & 0 & -1 \\
-1 & 0 & 0 & -1 \\
5 & 1 & 4 & 5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

which is an algebraic linear system having rank 3 , because

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{cccc}
2 & 1 & 2 & 2 \\
-1 & 1 & 0 & -1 \\
-1 & 0 & 0 & -1 \\
5 & 1 & 4 & 5
\end{array}\right)=2 \operatorname{det}\left(\begin{array}{ccc}
-1 & 1 & -1 \\
-1 & 0 & -1 \\
5 & 1 & 5
\end{array}\right)-4 \operatorname{det}\left(\begin{array}{ccc}
2 & 1 & 2 \\
-1 & 1 & -1 \\
-1 & 0 & -1
\end{array}\right)= \\
&=2\left[-\operatorname{det}\left(\begin{array}{cc}
-1 & -1 \\
5 & 5
\end{array}\right)-\operatorname{det}\left(\begin{array}{ll}
-1 & -1 \\
-1 & -1
\end{array}\right)\right]-4\left[-\operatorname{det}\left(\begin{array}{cc}
1 & 2 \\
1 & -1
\end{array}\right)-\operatorname{det}\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right)\right]=0
\end{aligned}
$$

and the minor of order 3

$$
\mathfrak{M}=\left(\begin{array}{ccc}
1 & 2 & 2 \\
1 & 0 & -1 \\
0 & 0 & -1
\end{array}\right)
$$

highlighted in the matrix A as shown
has determinant

$$
\operatorname{det} \mathfrak{M}=\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 2 \\
1 & 0 & -1 \\
0 & 0 & -1
\end{array}\right)=-\operatorname{det}\left(\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right)=2 \neq 0
$$

By virtue of this minor \mathfrak{M}, we can extract the system

$$
\left\{\begin{array}{l}
x_{2}+2 x_{3}+2 x_{4}=-2 t \\
x_{2}-x_{4}=t \\
-x_{4}=t
\end{array}\right.
$$

where we have given the arbitrary value $x_{1}=t$ to the unknown x_{1} that lays out of the minor \mathfrak{M} highlighted in the matrix A. The kernel has then dimension 1 because this linear system has the $\infty^{4-3}=\infty^{1}$ solutions

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right) t,
$$

from which we get that a basis vector of the kernel is the vector $\boldsymbol{k}=(1,0,0,-1)$, as it can be verified through

$$
L(\boldsymbol{k})=A \boldsymbol{k}=\left(\begin{array}{cccc}
2 & 1 & 2 & 2 \\
-1 & 1 & 0 & -1 \\
-1 & 0 & 0 & -1 \\
5 & 1 & 4 & 5
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \\
-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The image of L is spanned by all those column vectors having some component contained inside the minor highlighted in the matrix A, that is we have the basis of the image

$$
\mathcal{B}_{\operatorname{Im}(L)}=\boldsymbol{w}_{1}=\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right), \quad \boldsymbol{w}_{2}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right), \quad \boldsymbol{w}_{3}=\left(\begin{array}{c}
2 \\
-1 \\
-1 \\
5
\end{array}\right)\right\}
$$

that is the second, third, and fourth column of A, where the third column for \boldsymbol{w}_{2} has been divided by 2 .
3) The orthogonal projection of the vector \boldsymbol{u} on the image of L is the vector, that we denote by \boldsymbol{p} belonging to the image, such that it yields

$$
\begin{equation*}
\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{1}\right\rangle=0, \quad\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{2}\right\rangle=0, \quad\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{3}\right\rangle=0 . \tag{1}
\end{equation*}
$$

By expanding the vector $\boldsymbol{p} \in \operatorname{Im}(L)$ as linear combination of the basis vectors $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ of the image, that is

$$
\begin{equation*}
\boldsymbol{p}=\alpha \boldsymbol{w}_{1}+\beta \boldsymbol{w}_{2}+\gamma \boldsymbol{w}_{3}, \tag{2}
\end{equation*}
$$

we have

$$
\boldsymbol{u}-\boldsymbol{p}=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
1
\end{array}\right)-\alpha\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)-\beta\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right)-\gamma\left(\begin{array}{c}
2 \\
-1 \\
-1 \\
5
\end{array}\right)=\left(\begin{array}{c}
-2-\alpha-\beta-2 \gamma \\
1-\alpha+\gamma \\
1+\gamma \\
1-\alpha-2 \beta-5 \gamma
\end{array}\right)
$$

by virtue of which the three equations (1) assume the form of the linear system

$$
\left\{\begin{array}{l}
-3 \alpha-3 \beta-6 \gamma=0 \\
-3 \alpha-5 \beta-12 \gamma=0 \\
6 \alpha+12 \beta+31 \gamma=-1
\end{array}\right.
$$

The sum of the three equations and the subtraction of the first two equations give the two equations

$$
\left\{\begin{array}{l}
4 \beta+13 \gamma=-1 \\
\beta+3 \gamma=0
\end{array}\right.
$$

respectively, from which we get

$$
\alpha=-1, \quad \beta=3, \quad \gamma=-1
$$

and then, from (2), the orthogonal projection $\boldsymbol{p}=(0,0,1,0)$.
4) The matrix B associated to the linear application $\tilde{L}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{3}, x_{2}-x_{3}, x_{1}-x_{4},-x_{1}\right)$ is the matrix

$$
B=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

because it reproduces the given transformation laws of \tilde{L}, that is

$$
\tilde{L}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{1}-x_{3} \\
x_{2}-x_{3} \\
x_{1}-x_{4} \\
-x_{1}
\end{array}\right) .
$$

From the matrix B, one gets the matrix M associated to the product of linear applications in the order $L \tilde{L}$

$$
M=A B=\left(\begin{array}{cccc}
2 & 1 & 2 & 2 \\
-1 & 1 & 0 & -1 \\
-1 & 0 & 0 & -1 \\
5 & 1 & 4 & 5
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
1 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
2 & 1 & -3 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 1 & -6 & -4
\end{array}\right)
$$

$5,6)$ In order to verify whether the matrix M, which is an endomorphism of \mathbb{R}^{4}, is diagonalizable, we have to extablish whether there exists a basis of the vector space \mathbb{R}^{4} consisting of four eigenvectors of M, that is we have to verify, in other words, whether there exist four linearly independent eigenvectors of M, which are basis eigenvectors of their corresponding eigenspaces, denoted by $\mathbb{E}\left(\lambda_{i}\right)$, where λ_{i} represents an eigenvalue of M.

Due to the expansion of the determinant according to the second row, the characteristic polynomial of M is

$$
\begin{aligned}
& \operatorname{det}(M-\lambda \mathbb{I})=\operatorname{det}\left(\begin{array}{cccc}
2-\lambda & 1 & -3 & -2 \\
0 & 1-\lambda & 0 & 0 \\
0 & 0 & 1-\lambda & 0 \\
4 & 1 & -6 & -4-\lambda
\end{array}\right)=(1-\lambda) \operatorname{det}\left(\begin{array}{ccc}
2-\lambda & -3 & -2 \\
0 & 1-\lambda & 0 \\
4 & -6 & -4-\lambda
\end{array}\right)= \\
&=(1-\lambda)(1-\lambda) \operatorname{det}\left(\begin{array}{cc}
2-\lambda & -2 \\
4 & -4-\lambda
\end{array}\right)=\lambda(\lambda-1)^{2}(\lambda+2)
\end{aligned}
$$

whose zeros are:

- the simple ${ }^{1}$ eigenvalues $\lambda=0$ and $\lambda=-2$,
- the eigenvalue $\lambda=1$, having algebraic multiplicity 2 .

To the simple eigenvalue $\lambda=0$ we associate the linear system $(M-0 \mathbb{I}) \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
2 & 1 & -3 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 1 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M

$$
M=\left(\begin{array}{ccc}
\begin{array}{|ccc|}
\hline 2 & 1 & -3 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 \\
4 & 1 & -6
\end{array} & -4
\end{array}\right),
$$

[^0]from which it follows that the system has ∞^{1} solutions, and the eigenspace $\mathbb{E}(0)$ has dimension 1 .
By virtue of the highlighted minor matrix, we put $x_{4}=t$ and solve $2 x_{1}+x_{2}-3 x_{3}=2 t, x_{2}=0, x_{3}=0$, from which we get $x_{1}=t$ and then the first eigenvector $\boldsymbol{u}_{(0)}=(1,0,0,1)$ as basis eigenvector of $\mathbb{E}(0)$, satisfying effectively the equality
\[

\left($$
\begin{array}{cccc}
2 & 1 & -3 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 1 & -6 & -4
\end{array}
$$\right)\left($$
\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}
$$\right)=0\left($$
\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}
$$\right), \quad that is \quad M \boldsymbol{u}_{(0)}=0 \boldsymbol{u}_{(0)}
\]

To the simple eigenvalue $\lambda=-2$, we associate the linear system $[M-(-2) \mathbb{I}] \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
4 & 1 & -3 & -2 \\
0 & 3 & 0 & 0 \\
0 & 0 & 3 & 0 \\
4 & 1 & -6 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

having rank 3 by virtue of the following minor matrix of order 3 highlighted in $M+2 \mathbb{I}$

$$
M+2 \mathbb{I}=\left(\begin{array}{ccc}
\begin{array}{|ccc|}
\hline 4 & 1 & -3 \\
0 & 3 & 0 \\
0 & 0 & 3 \\
4 & 1 & -6
\end{array} & -2 \\
0
\end{array}\right),
$$

from which it follows that the system has ∞^{1} solutions, and the eigenspace $\mathbb{E}(-2)$ has dimension 1 .
By virtue of the highlighted minor matrix, we put $x_{4}=t$ and solve $4 x_{1}+x_{2}-3 x_{3}=2 t, x_{2}=0, x_{3}=0$, from which we get $x_{1}=t / 2$ and then, by eliminating the fraction, the second eigenvector $\boldsymbol{u}_{(-2)}=(1,0,0,2)$ as basis eigenvector of the eigenspace $\mathbb{E}(-2)$, satisfying effectively the equality

$$
\left(\begin{array}{cccc}
2 & 1 & -3 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 1 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right)=-2\left(\begin{array}{l}
1 \\
0 \\
0 \\
2
\end{array}\right), \quad \text { that is } \quad M \boldsymbol{u}_{(-2)}=-2 \boldsymbol{u}_{(-2)} .
$$

To the eigenvalue $\lambda=1$, having algebraic multiplicity 2 , we associate the system $(M-\mathbb{I}) \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
1 & 1 & -3 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
4 & 1 & -6 & -5
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

having rank 2 by virtue of the following minor matrix of order 2 highlighted in $M-\mathbb{I}$
from which it follows that the system has ∞^{2} solutions, and the eigenspace $\mathbb{E}(1)$ has dimension 2 . By virtue of the highlighted minor matrix, we put $x_{3}=\alpha, x_{4}=\beta$ and solve $x_{1}+x_{2}=3 \alpha+2 \beta, 4 x_{1}+x_{2}=6 \alpha+5 \beta$, from which, by subtracting, we get $3 x_{1}=3 \alpha+3 \beta$ and then the last two eigenvectors

$$
\boldsymbol{u}_{(1)}^{(a)}=(1,2,1,0) \quad \text { and } \quad \boldsymbol{u}_{(1)}^{(b)}=(1,1,0,1)
$$

as basis eigenvectors of the eigenspace $\mathbb{E}(1)$, satisfying effectively the equalities

$$
\left(\begin{array}{cccc}
2 & 1 & -3 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 1 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
2 & 1 & -3 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
4 & 1 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right)
$$

that is $M \boldsymbol{u}_{(1)}^{(a)}=\boldsymbol{u}_{(1)}^{(a)}$ and $M \boldsymbol{u}_{(1)}^{(b)}=\boldsymbol{u}_{(1)}^{(b)}$.
Since the set $\mathcal{B}=\left\{\boldsymbol{u}_{(0)}, \boldsymbol{u}_{(-2)}, \boldsymbol{u}_{(1)}^{(a)}, \boldsymbol{u}_{(1)}^{(b)}\right\}$, containing the four eigenvectors of the matrix M, is linearly independent, we conclude that the set \mathcal{B} is a basis of the vector space \mathbb{R}^{4}, and the matrix M is diagonalizable.

The matrix C describing the basis change from the initial basis to the basis of the eigenvectors, with respect to which M assumes diagonal form, is then the one whose columns are the four eigenvectors, that is

$$
C=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 1 & 0 \\
1 & 2 & 0 & 1
\end{array}\right)
$$

7) Since we have written the eigenvectors in the matrix C in the sequence corresponding to the eigenvalues in the order $\lambda=0,-2,1,1$, respectively, it follows that the diagonal matrix \mathcal{D}, associated to M, is

$$
\mathcal{D}=C^{-1} M C=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

8) The eigenspace associated to the eigenvalue having algebraic multiplicity 2 is $\mathbb{E}(1)$, corresponding to the eigenvalue $\lambda=1$, spanned by the two eigenvectors $\boldsymbol{u}_{(1)}^{(a)}, \boldsymbol{u}_{(1)}^{(b)}$. The vectors of this subspace have the form

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(\alpha+\beta, 2 \alpha+\beta, \alpha, \beta),
$$

and the vector \boldsymbol{v} of this subspace, orthogonal to the given vector $\boldsymbol{w}=(0,0,2,1)$, is the vector

$$
\boldsymbol{v}=(\alpha+\beta, 2 \alpha+\beta, \alpha, \beta)
$$

such that the scalar product $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ vanishes, that is the equality

$$
\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle(\alpha+\beta, 2 \alpha+\beta, \alpha, \beta),(0,0,2,1)\rangle=0
$$

holds, from which we get the relation $2 \alpha+\beta=0$. By choosing the particular solution given by $\alpha=-1, \beta=2$, we finally obtain the particular vector $\boldsymbol{v}=(1,0,-1,2)$ belonging to the eigenspace $\mathbb{E}(1)$ and orthogonal to the given vector $\boldsymbol{w}=(0,0,2,1)$.
9) The eigenspace $\mathbb{E}(1)$ associated to the eigenvalue having algebraic multiplicity 2 is spanned by the two eigenvectors $\boldsymbol{u}_{(1)}^{(a)}, \boldsymbol{u}_{(1)}^{(b)}$ and its orthogonal complement consists of all vectors $\boldsymbol{v}^{\perp}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ orthogonal to every vector of $\mathbb{E}(1)$ itself. By virtue of the theorem of the orthogonal complement, it is actually sufficient that the vectors $\boldsymbol{v}^{\perp}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ to be orthogonal to the basis eigenvectors $\boldsymbol{u}_{(1)}^{(a)}, \boldsymbol{u}_{(1)}^{(b)}$ of $\mathbb{E}(1)$, only.

Therefore, we impose the orthogonality conditions

$$
\left\langle\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \boldsymbol{u}_{(1)}^{(a)}\right\rangle=0 \quad \text { and } \quad\left\langle\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \boldsymbol{u}_{(1)}^{(b)}\right\rangle=0
$$

which are equivalent to the linear system having rank 2 and 4 unknowns

$$
\left\{\begin{array}{l}
y_{1}+2 y_{2}+y_{3}=0 \\
y_{1}+y_{2}+y_{4}=0,
\end{array}\right.
$$

from which we extract the system (already uncoupled) corresponding to the unknowns y_{3}, y_{4}

$$
\left\{\begin{array}{l}
y_{3}=-y_{1}-2 y_{2} \\
y_{4}=-y_{1}-y_{2} .
\end{array}\right.
$$

Since this system has ∞^{2} solutions having the vector form $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(\alpha, \beta,-\alpha-2 \beta,-\alpha-\beta)$, we can conclude that the basis vectors of the orthogonal complement of the eigenspace $\mathbb{E}(1)$ are

$$
\boldsymbol{z}_{1}=(1,0,-1,-1) \quad \text { and } \quad \boldsymbol{z}_{2}=(0,1,-2,-1),
$$

effectively satisfying the orthogonality conditions with the basis eigenvectors $\boldsymbol{u}_{(1)}^{(a)}, \boldsymbol{u}_{(1)}^{(b)}$ of $\mathbb{E}(1)$

$$
\left\langle\boldsymbol{z}_{1}, \boldsymbol{u}_{(1)}^{(a)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{1}, \boldsymbol{u}_{(1)}^{(b)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{2}, \boldsymbol{u}_{(1)}^{(a)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{2}, \boldsymbol{u}_{(1)}^{(b)}\right\rangle=0
$$

Exercise 2.

The homogeneous equation associated to the given equation is $4 y^{\prime \prime}(x)+4 y^{\prime}(x)+y(x)=0$, to which the algebraic equation $4 \lambda^{2}+4 \lambda+1=0$ corresponds, having the solution $\lambda=-1 / 2$ with algebraic multiplicity 2 .

The solution, that we denote by $y_{0}(x)$, of the homogeneous equation is then

$$
y_{0}(x)=A e^{-x / 2}+B x e^{-x / 2},
$$

and since the right-hand side of the given non-homogeneous equation is $3 e^{-x / 2}$, that is the product of a constant (polynomial of zeroth degree) times the exponential $e^{-x / 2}$, we write the particular solution $y_{p}(x)$ in the same form $y_{p}(x)=k e^{-x / 2}$. Since this $y_{p}(x)$ is similar to the term $A e^{-x / 2}$ of the solution of the homogeneous equation, we multiply $y_{p}(x)$ times x and obtain the new particular solution $y_{p}(x)=k x e^{-x / 2}$, which is similar to the term $B x e^{-x / 2}$ of the solution of the homogeneous equation. We then multiply $k x e^{-x / 2}$ by another factor x in such a way that the final particular solution $y_{p}(x)$ assumes the final form $y_{p}(x)=k x^{2} e^{-x / 2}$ and the global solution of the given equation is the function $y(x)=y_{0}(x)+y_{p}(x)$, having no pair of similar terms. Whereas the arbitrary constants A, B of $y_{0}(x)$ can be obtained through the initial conditions, the coefficient k of $y_{p}(x)$ has to be obtained by imposing that $y_{p}(x)$ (together with its derivatives) satisfies the given non-homogeneous equation.

The derivatives of $y_{p}(x)$ are

$$
y_{p}^{\prime}(x)=2 k x e^{-x / 2}-\frac{k}{2} x^{2} e^{-x / 2} \quad \text { and } \quad y_{p}^{\prime \prime}(x)=2 k e^{-x / 2}-2 k x e^{-x / 2}+\frac{k}{4} x^{2} e^{-x / 2}
$$

that, inserted into the given equation, give the equality

$$
4\left(2 k e^{-x / 2}-2 k x e^{-x / 2}+\frac{k}{4} x^{2} e^{-x / 2}\right)+4\left(2 k x e^{-x / 2}-\frac{k}{2} x^{2} e^{-x / 2}\right)+k x^{2} e^{-x / 2}=3 e^{-x / 2}
$$

from which, after the semplifications (according to the colors)

$$
8 k e^{-x / 2}=8 k x e^{-x / 2} \pm k x^{2} e^{-x / 2}+8 k x e^{-x / 2}=2 k x^{2} e^{-x / 2}+k x^{2} e^{-x / 2}=3 e^{-x / 2}
$$

we get $8 k e^{-x / 2}=3 e^{-x / 2}$, that is the equality $8 k=3$ between the corresponding coefficients and then $k=3 / 8$.
The solution of the given differential equation is then

$$
y(x)=A e^{-x / 2}+B x e^{-x / 2}+\frac{3}{8} x^{2} e^{-x / 2}
$$

whose first derivative is

$$
y^{\prime}(x)=-\frac{A}{2} e^{-x / 2}+B e^{-x / 2}-\frac{B}{2} x e^{-x / 2}+\frac{3}{4} x e^{-x / 2}-\frac{3}{16} x^{2} e^{-x / 2},
$$

from which, by imposing the initial conditions $y(0)=-2, y^{\prime}(0)=2$ of the Cauchy problem, the system

$$
\left\{\begin{array}{ccc}
A & = & -2 \\
-A / 2+B & = & 2
\end{array}\right.
$$

follows, having solution $A=-2, B=1$. The solution of the given Cauchy problem is then

$$
y(x)=-2 e^{-x / 2}+x e^{-x / 2}+\frac{3}{8} x^{2} e^{-x / 2} .
$$

Exercise 3. The Lagrangian function $\mathcal{L}(x, y, z ; \lambda)$ associated to the given optimization problem is

$$
\mathcal{L}(x, y, z ; \lambda)=x+2 y-3 z+\lambda\left(2 x^{2}+y^{2}-z^{2}+x+z+3\right),
$$

from which the first order conditions

$$
\left\{\begin{array}{l}
1+4 \lambda x+\lambda=0 \\
2+2 \lambda y=0 \\
-3-2 \lambda z+\lambda=0 \\
2 x^{2}+y^{2}-z^{2}+x+z+3=0
\end{array}\right.
$$

follow. From the first, second, and third equation, we get

$$
x=-\frac{\lambda+1}{4 \lambda}, \quad y=-\frac{1}{\lambda}, \quad z=\frac{\lambda-3}{2 \lambda},
$$

respectively, that, inserted into the fourth equation, give

$$
2\left(-\frac{\lambda+1}{4 \lambda}\right)^{2}+\left(-\frac{1}{\lambda}\right)^{2}-\left(\frac{\lambda-3}{2 \lambda}\right)^{2}-\frac{\lambda+1}{4 \lambda}+\frac{\lambda-3}{2 \lambda}+3=0 \quad \Longrightarrow \quad \frac{25 \lambda^{2}-9}{8 \lambda^{2}}=0
$$

where $\lambda \neq 0$ because $\lambda=0$ can not be a Lagrange's multiplier.
From $25 \lambda^{2}-9=0$, we get $\lambda= \pm 3 / 5$ and then the optimal points $(x, y, z ; \lambda)$ having coordinates

$$
A=\left(-\frac{2}{3},-\frac{5}{3},-2 ; \frac{3}{5}\right) \quad \text { and } \quad B=\left(\frac{1}{6}, \frac{5}{3}, 3 ;-\frac{3}{5}\right) .
$$

The bordered hessian matrix of this optimization problem is

$$
\bar{H}(x, y, z ; \lambda)=\left(\begin{array}{cccc}
0 & 4 x+1 & 2 y & 1-2 z \\
4 x+1 & 4 \lambda & 0 & 0 \\
2 y & 0 & 2 \lambda & 0 \\
1-2 z & 0 & 0 & -2 \lambda
\end{array}\right)
$$

and we remind the general second order conditions based on the analysis of the bordered hessian matrix.
Given a square matrix \bar{H} of order n and a positive integer number $k \leqslant n$, the minor matrix consisting of the first k rows and the first k columns of \bar{H} is called leading principal minor of order k included in the matrix \bar{H}.

In order to fix the ideas, we consider for example a square matrix of order 5

$$
\bar{H}=\left(\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right),
$$

in which we highlight all leading principal minors, from the order 1 until the highest possible order 5

and we denote by \mathcal{H}_{k} the determinant of the leading principal minor of order k included in the matrix \bar{H}.
The general second order conditions based on the analysis of the bordered hessian matrix \bar{H} now read in the following way. Given the optimization problem consisting of optimizing a function depending on n variables subject to $p<n$ constraints, we consider the bordered hessian matrix $\bar{H}(P)$ corresponding to the optimization problem, evaluated in an optimal point P determined by means of the first order conditions. We then have that

- if it yields

$$
\begin{gather*}
(-1)^{p+1} \mathcal{H}_{2 p+1}(P)>0, \\
(-1)^{p+2} \mathcal{H}_{2 p+2}(P)>0, \\
(-1)^{p+3} \mathcal{H}_{2 p+3}(P)>0, \tag{3a}\\
\vdots \\
(-1)^{n} \mathcal{H}_{n+p}(P)>0,
\end{gather*}
$$

the point P is the maximum point;

- if it yields

$$
\begin{gather*}
(-1)^{p} \mathcal{H}_{2 p+1}(P)>0, \\
(-1)^{p} \mathcal{H}_{2 p+2}(P)>0, \\
(-1)^{p} \mathcal{H}_{2 p+3}(P)>0, \tag{3b}\\
\vdots \\
(-1)^{p} \mathcal{H}_{n+p}(P)>0,
\end{gather*}
$$

the point P is the minimum point.
It is important to point out that conditions (3) are sufficient conditions, only, and it is also possible that they do not hold. If conditions (3) do not hold, we have to conclude that the nature of the optimal point can not be determined by means of the second order conditions (3), and conditions of higher order are have to be studied.

In the exercise of the exam, we have the bordered hessian matrices evaluated in the two optimal points A, B

$$
\bar{H}(A)=\left(\begin{array}{cccc}
0 & -5 / 3 & -10 / 3 & 5 \\
-5 / 3 & 12 / 5 & 0 & 0 \\
-10 / 3 & 0 & 6 / 5 & 0 \\
5 & 0 & 0 & -6 / 5
\end{array}\right) \quad \text { and } \quad \bar{H}(B)=\left(\begin{array}{cccc}
0 & 5 / 3 & 10 / 3 & -5 \\
5 / 3 & -12 / 5 & 0 & 0 \\
10 / 3 & 0 & -6 / 5 & 0 \\
-5 & 0 & 0 & 6 / 5
\end{array}\right)
$$

Since we have $n=3$ variables and $p=1$ constraint, we have $2 p+1=3$ and $n+p=4$, that is we have to compute the determinant of the leading principal minors of order 3 and of order 4 of the bordered hessian matrices $\bar{H}(A), \bar{H}(B)$ evaluated in the optimal points.

The leading principal minors of order 3 and of order 4 of $\bar{H}(A)$ have determinant

$$
\begin{gathered}
\operatorname{det}\left(\begin{array}{ccc}
0 & -5 / 3 & -10 / 3 \\
-5 / 3 & 12 / 5 & 0 \\
-10 / 3 & 0 & 6 / 5
\end{array}\right)=\left[\frac{5}{3} \operatorname{det}\left(\begin{array}{cc}
-5 / 3 & 0 \\
-10 / 3 & 6 / 5
\end{array}\right)\right]-\left[\frac{10}{3} \operatorname{det}\left(\begin{array}{cc}
-5 / 3 & 12 / 5 \\
-10 / 3 & 0
\end{array}\right)\right]= \\
=\left[\left(\frac{5}{3}\right)(-2)\right]-\left[\left(\frac{10}{3}\right)(8)\right]=-30<0
\end{gathered}
$$

and

$$
\begin{gathered}
\operatorname{det} \bar{H}(A)=\operatorname{det}\left(\begin{array}{cccc}
0 & -5 / 3 & -10 / 3 & 5 \\
-5 / 3 & 12 / 5 & 0 & 0 \\
-10 / 3 & 0 & 6 / 5 & 0 \\
5 & 0 & 0 & -6 / 5
\end{array}\right)= \\
=-5 \operatorname{det}\left(\begin{array}{ccc}
-5 / 3 & -10 / 3 & 5 \\
12 / 5 & 0 & 0 \\
0 & 6 / 5 & 0
\end{array}\right)-\frac{6}{5} \operatorname{det}\left(\begin{array}{ccc}
0 & -5 / 3 & -10 / 3 \\
-5 / 3 & 12 / 5 & 0 \\
-10 / 3 & 0 & 6 / 5
\end{array}\right)= \\
=-5\left(-\frac{6}{5}\right) \operatorname{det}\left(\begin{array}{cc}
-5 / 3 & 5 \\
12 / 5 & 0
\end{array}\right)-\frac{6}{5}\left[\frac{5}{3} \operatorname{det}\left(\begin{array}{cc}
-5 / 3 & 0 \\
-10 / 3 & 6 / 5
\end{array}\right)-\frac{10}{3} \operatorname{det}\left(\begin{array}{cc}
-5 / 3 & 12 / 5 \\
-10 / 3 & 0
\end{array}\right)\right]= \\
=\left[-5\left(-\frac{6}{5}\right)(-12)\right]-\left\{\frac{6}{5}\left[\frac{5}{3}(-2)-\frac{10}{3}(8)\right]\right\}=-72+36=-36<0,
\end{gathered}
$$

that is the leading principal minors $\mathcal{H}_{3}(A), \mathcal{H}_{4}(A)$ fullfil the conditions (3b)

$$
-\mathcal{H}_{3}(A)>0 \quad \text { and } \quad-\mathcal{H}_{4}(A)>0,
$$

from which we can conclude that the point A is the minimum point.
By observing that the elements of the bordered hessian matrices $\bar{H}(B)$ have the opposite sign with respect to the elements of the bordered hessian matrices $\bar{H}(A)$, we have that the determinant of the leading principal minor $\mathcal{H}_{3}(B)$ has opposite sign with respect to the determinant of the leading principal minor $\mathcal{H}_{3}(A)$, because \mathcal{H}_{3} is a matrix of odd order, whereas the determinant of the leading principal minor $\mathcal{H}_{4}(B)$ has the same sign of the determinant of the leading principal minor $\mathcal{H}_{4}(A)$, because \mathcal{H}_{4} is a matrix of even order.

From $\mathcal{H}_{3}(B)>0$ and $\mathcal{H}_{4}(B)<0$, it follows that the leading principal minors $\mathcal{H}_{3}(B), \mathcal{H}_{4}(B)$ fullfil the conditions (3a)

$$
\mathcal{H}_{3}(B)>0 \quad \text { and } \quad-\mathcal{H}_{4}(B)>0
$$

from which we obtain that the point B is the maximum point.

MATHEMATICS FOR FINANCE Exam

February 2024, the 6th

Surname

ID Number

Name \qquad

Exercise 1. Given the canonical basis $\mathcal{B}_{\mathbb{R}^{4}}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right\}$ of the vector spaces \mathbb{R}^{4}, and the linear application $L: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ acting on the basis vectors of \mathbb{R}^{4} according the transformation laws

$$
\left\{\begin{array}{l}
L\left(\boldsymbol{e}_{1}\right)=-2 \boldsymbol{e}_{1}+\boldsymbol{e}_{3}+\boldsymbol{e}_{4} \\
L\left(\boldsymbol{e}_{2}\right)=-2 \boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}-3 \boldsymbol{e}_{4} \\
L\left(\boldsymbol{e}_{3}\right)=-2 \boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3} \\
L\left(\boldsymbol{e}_{4}\right)=3 \boldsymbol{e}_{2}
\end{array}\right.
$$

1) write the matrix A associated to the linear application L with respect to the given basis;
2) find the subspaces kernel and image of the linear application L determining their dimension and a basis for both subspaces;
3) find the orthogonal projection of the vector $\boldsymbol{u}=(1,0,2,-1)$ on the subspace image of L.

Let us consider the linear application $\tilde{L}: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ defined by the transformation laws of the components

$$
\tilde{L}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{3}, x_{4}, x_{1}-x_{4},-x_{2}\right)
$$

where in the vector space \mathbb{R}^{4} the same basis $\mathcal{B}_{\mathbb{R}^{4}}$ is fixed as before.
4) Write the matrix B associated to the linear application \tilde{L} with respect to the given basis and determine the matrix, denoted by M, associated to the composition of linear applications $L \circ \tilde{L}$ (matrix product $A B$).
5) Verify whether the matrix M is diagonalizable.

If M is diagonalizable,
6) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by \mathcal{D} and write the matrix C of the basis change such that $C^{-1} M C=\mathcal{D}$;
7) write the diagonal matrix \mathcal{D} (without performing the matrix multiplication $C^{-1} M C$);
8) in the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2 , find an eingenvector \boldsymbol{v} of M which is orthogonal to the vector $\boldsymbol{w}=(-3,1,4,-1)$;
9) find a basis of the subspace orthogonal complement of the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2 .

Exercise 2. Solve the following Cauchy problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}(x)+4 y^{\prime}(x)+4 y(x)=(6 x-2) e^{-2 x} \\
y(0)=1 \\
y^{\prime}(0)=-1
\end{array}\right.
$$

Exercise 3. Find the optimal points of the function

$$
f(x, y, z)=3 x-3 y+2 z
$$

subject to the constraint $x^{2}-y^{2}-z^{2}+3 x+z=-11$.

Solution of the exam of the day February 2024, the 6th

Exercise 1.

1) The matrix A is

$$
A=\left(\begin{array}{cccc}
-2 & -2 & -2 & 0 \\
0 & 1 & 1 & 3 \\
1 & 1 & 1 & 0 \\
1 & -3 & 0 & 0
\end{array}\right)
$$

obtained by writing in columns the coefficients of

$$
\begin{array}{ll}
L\left(\boldsymbol{e}_{1}\right)=-2 \boldsymbol{e}_{1}+\boldsymbol{e}_{3}+\boldsymbol{e}_{4}, & L\left(\boldsymbol{e}_{2}\right)=-2 \boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}-3 \boldsymbol{e}_{4}, \\
L\left(\boldsymbol{e}_{3}\right)=-2 \boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}, & L\left(\boldsymbol{e}_{4}\right)=3 \boldsymbol{e}_{2} .
\end{array}
$$

2) The kernel of L is the subspace of \mathbb{R}^{4} containing the vectors $\boldsymbol{k}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ such that the equality $L(\boldsymbol{k})=\mathbf{0}$ holds, that is

$$
\left(\begin{array}{cccc}
-2 & -2 & -2 & 0 \\
0 & 1 & 1 & 3 \\
1 & 1 & 1 & 0 \\
1 & -3 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

which is an algebraic linear system having rank 3 , because

$$
\operatorname{det}\left(\begin{array}{cccc}
-2 & -2 & -2 & 0 \\
0 & 1 & 1 & 3 \\
1 & 1 & 1 & 0 \\
1 & -3 & 0 & 0
\end{array}\right)=3 \operatorname{det}\left(\begin{array}{ccc}
-2 & -2 & -2 \\
1 & 1 & 1 \\
1 & -3 & 0
\end{array}\right)=3\left[\operatorname{det}\left(\begin{array}{cc}
-2 & -2 \\
1 & 1
\end{array}\right)+3 \operatorname{det}\left(\begin{array}{cc}
-2 & -2 \\
1 & 1
\end{array}\right)\right]=0
$$

and the minor of order 3

$$
\mathfrak{M}=\left(\begin{array}{lll}
0 & 1 & 3 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

highlighted in the matrix A as shown

$$
A=\left(\begin{array}{cccc}
-2 & -2 & -2 & 0 \\
\begin{array}{|ccc}
0 \\
1 \\
1 \\
\hline
\end{array} & 1 & \begin{array}{cc}
1 & 3 \\
1 & 0 \\
0 & 0 \\
\hline
\end{array}
\end{array}\right)
$$

has determinant

$$
\operatorname{det} \mathfrak{M}=\operatorname{det}\left(\begin{array}{lll}
0 & 1 & 3 \\
1 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
1 & 3 \\
1 & 0
\end{array}\right)=-3 \neq 0
$$

By virtue of this minor \mathfrak{M}, we can extract the system

$$
\left\{\begin{array}{l}
x_{3}+3 x_{4}=-t \\
x_{1}+x_{3}=-t \\
x_{1}=3 t
\end{array}\right.
$$

where we have given the arbitrary value $x_{2}=t$ to the unknown x_{2} that lays out of the minor \mathfrak{M} highlighted in the matrix A. The kernel has then dimension 1 because this linear system has the $\infty^{4-3}=\infty^{1}$ solutions

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
3 \\
1 \\
-4 \\
1
\end{array}\right) t,
$$

from which we get that a basis vector of the kernel is the vector $\boldsymbol{k}=(3,1,-4,1)$, as it can be verified through

$$
L(\boldsymbol{k})=A \boldsymbol{k}=\left(\begin{array}{cccc}
-2 & -2 & -2 & 0 \\
0 & 1 & 1 & 3 \\
1 & 1 & 1 & 0 \\
1 & -3 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
3 \\
1 \\
-4 \\
1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

The image of L is spanned by all those column vectors having some component contained inside the minor highlighted in the matrix A, that is we have the basis of the image

$$
\mathcal{B}_{I m(L)}=\boldsymbol{w}_{1}=\left\{\left(\begin{array}{c}
-2 \\
0 \\
1 \\
1
\end{array}\right), \quad \boldsymbol{w}_{2}=\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right), \quad \boldsymbol{w}_{3}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)\right\}
$$

that is the first, third, and fourth column of A, where the fourth column for \boldsymbol{w}_{3} has been divided by 3 .
3) The orthogonal projection of the vector \boldsymbol{u} on the image of L is the vector, that we denote by \boldsymbol{p} belonging to the image, such that it yields

$$
\begin{equation*}
\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{1}\right\rangle=0, \quad\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{2}\right\rangle=0, \quad\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{3}\right\rangle=0 . \tag{4}
\end{equation*}
$$

By expanding the vector $\boldsymbol{p} \in \operatorname{Im}(L)$ as linear combination of the basis vectors $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ of the image, that is

$$
\begin{equation*}
\boldsymbol{p}=\alpha \boldsymbol{w}_{1}+\beta \boldsymbol{w}_{2}+\gamma \boldsymbol{w}_{3}, \tag{5}
\end{equation*}
$$

we have

$$
\boldsymbol{u}-\boldsymbol{p}=\left(\begin{array}{c}
1 \\
0 \\
2 \\
-1
\end{array}\right)-\alpha\left(\begin{array}{c}
-2 \\
0 \\
1 \\
1
\end{array}\right)-\beta\left(\begin{array}{c}
-2 \\
1 \\
1 \\
0
\end{array}\right)-\gamma\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{c}
1+2 \alpha+2 \beta \\
-\beta-\gamma \\
2-\alpha-\beta \\
-1-\alpha
\end{array}\right)
$$

by virtue of which the three equations (4) assume the form of the linear system

$$
\left\{\begin{array}{l}
6 \alpha+5 \beta=-1 \\
-5 \alpha-6 \beta-\gamma=0 \\
\beta+\gamma=0 .
\end{array}\right.
$$

The sum of the three equations gives the result $\alpha=-1, \beta=1, \gamma=-1$, and then, from (5), the orthogonal projection $\boldsymbol{p}=(0,0,0,-1)$.
4) The matrix B associated to the linear application $\tilde{L}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{3}, x_{4}, x_{1}-x_{4},-x_{2}\right)$ is the matrix

$$
B=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

because it reproduces the given transformation laws of \tilde{L}, that is

$$
\tilde{L}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & -1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{3} \\
x_{4} \\
x_{1}-x_{4} \\
-x_{2}
\end{array}\right) .
$$

From the matrix B, one gets the matrix M associated to the product of linear applications in the order $L \tilde{L}$

$$
M=A B=\left(\begin{array}{cccc}
-2 & -2 & -2 & 0 \\
0 & 1 & 1 & 3 \\
1 & 1 & 1 & 0 \\
1 & -3 & 0 & 0
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 \\
0 & -1 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
-2 & 0 & -2 & 0 \\
1 & -3 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -3
\end{array}\right)
$$

$5,6)$ In order to verify whether the matrix M, which is an endomorphism of \mathbb{R}^{4}, is diagonalizable, we have to extablish whether there exists a basis of the vector space \mathbb{R}^{4} consisting of four eigenvectors of M, that is we have to verify, in other words, whether there exist four linearly independent eigenvectors of M, which are basis eigenvectors of their corresponding eigenspaces, denoted by $\mathbb{E}\left(\lambda_{i}\right)$, where λ_{i} represents an eigenvalue of M.

Due to the expansion of the determinant according to the fourth column, the characteristic polynomial of M is

$$
\begin{aligned}
& \operatorname{det}(M-\lambda \mathbb{I})=\operatorname{det}\left(\begin{array}{cccc}
-2-\lambda & 0 & -2 & 0 \\
1 & -3-\lambda & 0 & 0 \\
1 & 0 & 1-\lambda & 0 \\
0 & 0 & 1 & -3-\lambda
\end{array}\right)=(-3-\lambda) \operatorname{det}\left(\begin{array}{ccc}
-2-\lambda & 0 & -2 \\
1 & -3-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{array}\right)= \\
&=(-3-\lambda)(-3-\lambda) \operatorname{det}\left(\begin{array}{cc}
-2-\lambda & -2 \\
1 & 1-\lambda
\end{array}\right)=\lambda(\lambda+3)^{2}(\lambda+1)
\end{aligned}
$$

whose zeros are:

- the simple ${ }^{2}$ eigenvalues $\lambda=0$ and $\lambda=-1$,
- the eigenvalue $\lambda=-3$, having algebraic multiplicity 2 .

To the simple eigenvalue $\lambda=0$ we associate the linear system $(M-0 \mathbb{I}) \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
-2 & 0 & -2 & 0 \\
1 & -3 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M

$$
M=\left(\begin{array}{cccc}
-2 & 0 & -2 & 0 \\
\begin{array}{|ccc|}
\hline 1 & -3 & 0 \\
1 & 0 & 1 \\
0 & 0 & 1 \\
\hline
\end{array} & \begin{array}{c}
0 \\
-3
\end{array}
\end{array}\right),
$$

from which it follows that the system has ∞^{1} solutions, and the eigenspace $\mathbb{E}(0)$ has dimension 1 .
By virtue of the highlighted minor matrix, we put $x_{4}=t$ and solve $x_{1}-3 x_{2}=0, x_{1}+x_{3}=0, x_{3}=3 t$, from which we get $-x_{1}=x_{3}=3 t, x_{2}=t$ and then the first eigenvector $\boldsymbol{u}_{(0)}=(-3,-1,3,1)$ as basis eigenvector of the eigenspace $\mathbb{E}(0)$, satisfying effectively the equality

$$
\left(\begin{array}{cccc}
-2 & 0 & -2 & 0 \\
1 & -3 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -3
\end{array}\right)\left(\begin{array}{c}
-3 \\
-1 \\
3 \\
1
\end{array}\right)=0\left(\begin{array}{c}
-3 \\
-1 \\
3 \\
1
\end{array}\right), \quad \text { that is } \quad M \boldsymbol{u}_{(0)}=0 \boldsymbol{u}_{(0)}
$$

[^1]To the simple eigenvalue $\lambda=-1$, we associate the linear system $[M-(-1) \mathbb{I}] \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
-1 & 0 & -2 & 0 \\
1 & -2 & 0 & 0 \\
1 & 0 & 2 & 0 \\
0 & 0 & 1 & -2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

having rank 3 by virtue of the following minor matrix of order 3 highlighted in $M+\mathbb{I}$

$$
M+\mathbb{I}=\left(\begin{array}{c}
-1 \\
1 \\
1 \\
0 \\
\hline \begin{array}{cccc}
-2 & -2 & 0 \\
0 & 2 & 0 \\
0 & 1 & -2 \\
\hline
\end{array}
\end{array}\right)
$$

from which it follows that the system has ∞^{1} solutions, and the eigenspace $\mathbb{E}(-1)$ has dimension 1 .
By virtue of the highlighted minor matrix, we put $x_{1}=t$ and solve $-2 x_{2}=-t, 2 x_{3}=-t, x_{3}-2 x_{4}=0$, from which we get $x_{2}=t / 2$ and then, by eliminating the fractions, the second eigenvector $\boldsymbol{u}_{(-1)}=(4,2,-2,-1)$ as basis eigenvector of the eigenspace $\mathbb{E}(-1)$, satisfying effectively the equality

$$
\left(\begin{array}{cccc}
-2 & 0 & -2 & 0 \\
1 & -3 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -3
\end{array}\right)\left(\begin{array}{c}
4 \\
2 \\
-2 \\
-1
\end{array}\right)=-\left(\begin{array}{c}
4 \\
2 \\
-2 \\
-1
\end{array}\right), \quad \text { that is } \quad M \boldsymbol{u}_{(-1)}=-\boldsymbol{u}_{(-1)}
$$

To the eigenvalue $\lambda=-3$, having algebraic multiplicity 2 , we associate the system $(M+3 \mathbb{I}) \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
1 & 0 & -2 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 4 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right),
$$

having rank 2 by virtue of the following minor matrix of order 2 highlighted in $M+3 \mathbb{I}$

$$
M+3 \mathbb{I}=\left(\begin{array}{cccc}
\begin{array}{|ccc}
1 & 0 & \boxed{-2}
\end{array} & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 4 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

from which it follows that the system has ∞^{2} solutions, and the eigenspace $\mathbb{E}(-3)$ has dimension 2 .
By virtue of the highlighted minor matrix, we put $x_{2}=\alpha, x_{4}=\beta$ and solve $x_{1}-2 x_{3}=0, x_{3}=0$, from which we get $x_{1}=x_{3}=0$ and then the last two eigenvectors

$$
\boldsymbol{u}_{(-3)}^{(a)}=(0,1,0,0) \quad \text { and } \quad \boldsymbol{u}_{(-3)}^{(b)}=(0,0,0,1)
$$

as basis eigenvectors of the eigenspace $\mathbb{E}(-3)$, satisfying effectively the equalities

$$
\left(\begin{array}{cccc}
-2 & 0 & -2 & 0 \\
1 & -3 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -3
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right)=-3\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
-2 & 0 & -2 & 0 \\
1 & -3 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 0 & 1 & -3
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=-3\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

that is $M \boldsymbol{u}_{(-3)}^{(a)}=-3 \boldsymbol{u}_{(-3)}^{(a)}$ and $M \boldsymbol{u}_{(-3)}^{(b)}=-3 \boldsymbol{u}_{(-3)}^{(b)}$.
Since the set $\mathcal{B}=\left\{\boldsymbol{u}_{(0)}, \boldsymbol{u}_{(-1)}, \boldsymbol{u}_{(-3)}^{(a)}, \boldsymbol{u}_{(-3)}^{(b)}\right\}$, containing the four eigenvectors of the matrix M, is linearly independent, we conclude that the set \mathcal{B} is a basis of the vector space \mathbb{R}^{4}, and the matrix M is diagonalizable.

The matrix C describing the basis change from the initial basis to the basis of the eigenvectors, with respect to which M assumes diagonal form, is then the one whose columns are the four eigenvectors, that is

$$
C=\left(\begin{array}{cccc}
-3 & 4 & 0 & 0 \\
-1 & 2 & 1 & 0 \\
3 & -2 & 0 & 0 \\
1 & -1 & 0 & 1
\end{array}\right)
$$

7) Since we have written the eigenvectors in the matrix C in the sequence corresponding to the eigenvalues in the order $\lambda=0,-2,1,1$, respectively, it follows that the diagonal matrix \mathcal{D}, associated to M, is

$$
\mathcal{D}=C^{-1} M C=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -3 & 0 \\
0 & 0 & 0 & -3
\end{array}\right)
$$

8) The eigenspace associated to the eigenvalue having algebraic multiplicity 2 is $\mathbb{E}(-3)$, corresponding to the eigenvalue $\lambda=-3$, spanned by the two eigenvectors $\boldsymbol{u}_{(-3)}^{(a)}, \boldsymbol{u}_{(-3)}^{(b)}$. The vectors of this subspace have the parametric form $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(0, \alpha, 0, \beta)$, and the general vector \boldsymbol{v} of this subspace, orthogonal to the given vector $\boldsymbol{w}=(-3,1,4,-1)$, is the vector $\boldsymbol{v}=(0, \alpha, 0, \beta)$ such that the scalar product $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ vanishes, that is the equality $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle(0, \alpha, 0, \beta),(-3,1,4,-1)\rangle=0$ holds, from which we get the relation $\alpha-\beta=0$.

By choosing the particular solution $\alpha=1, \beta=1$, we finally obtain the particular vector $\boldsymbol{v}=(0,1,0,1)$ belonging to the eigenspace $\mathbb{E}(-3)$ and orthogonal to the given vector $\boldsymbol{w}=(-3,1,4,-1)$.
9) The eigenspace $\mathbb{E}(-3)$ associated to the eigenvalue having algebraic multiplicity 2 is spanned by the two eigenvectors $\boldsymbol{u}_{(-3)}^{(a)}, \boldsymbol{u}_{(-3)}^{(b)}$ and its orthogonal complement consists of all vectors $\boldsymbol{v}^{\perp}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ orthogonal to every vector of $\mathbb{E}(-3)$ itself. By virtue of the theorem of the orthogonal complement, it is actually sufficient that the vectors $\boldsymbol{v}^{\perp}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ to be orthogonal to the basis eigenvectors $\boldsymbol{u}_{(-3)}^{(a)}, \boldsymbol{u}_{(1)}^{(b)}$ of $\mathbb{E}(-3)$, only.

Therefore, we impose the orthogonality conditions

$$
\left\langle\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \boldsymbol{u}_{(-3)}^{(a)}\right\rangle=0 \quad \text { and } \quad\left\langle\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \boldsymbol{u}_{(-3)}^{(b)}\right\rangle=0
$$

which are equivalent to the linear system having rank 2 and 4 unknowns $y_{2}=0, y_{4}=0$.
Since this system has the ∞^{2} solutions $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(\alpha, 0, \beta, 0)$, we can conclude that the basis vectors of the orthogonal complement of the eigenspace $\mathbb{E}(-3)$ are $\boldsymbol{z}_{1}=(1,0,0,0)$ and $\boldsymbol{z}_{2}=(0,0,1,0)$, effectively satisfying the orthogonality conditions with the basis eigenvectors $\boldsymbol{u}_{(-3)}^{(a)}, \boldsymbol{u}_{(-3)}^{(b)}$ of $\mathbb{E}(-3)$

$$
\left\langle\boldsymbol{z}_{1}, \boldsymbol{u}_{(-3)}^{(a)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{1}, \boldsymbol{u}_{(-3)}^{(b)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{2}, \boldsymbol{u}_{(-3)}^{(a)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{2}, \boldsymbol{u}_{(-3)}^{(b)}\right\rangle=0 .
$$

Exercise 2.

The homogeneous equation associated to the given equation is $y^{\prime \prime}(x)+4 y^{\prime}(x)+4 y(x)=0$, to which the algebraic equation $\lambda^{2}+4 \lambda+4=0$ corresponds, having the solution $\lambda=-2$ with algebraic multiplicity 2 .

The solution, that we denote by $y_{0}(x)$, of the homogeneous equation is then

$$
y_{0}(x)=A e^{-2 x}+B x e^{-2 x},
$$

and since the right-hand side of the given non-homogeneous equation is $6 x e^{-2 x}-2 e^{-2 x}$, that is the product of a polynomial of first degree times the exponential $e^{-2 x}$, we write the particular solution $y_{p}(x)$ in the same form

$$
y_{p}(x)=(h x+k) e^{-2 x} .
$$

Since this $y_{p}(x)$ has similar terms to the ones of the solution of the homogeneous equation, we multiply $y_{p}(x)$ times x and obtain the new particular solution

$$
y_{p}(x)=\left(h x^{2}+k x\right) e^{-2 x} \text {, }
$$

whose term with k is similar to the term $B x e^{-2 x}$ of the solution of the homogeneous equation. We then multiply $\left(h x^{2}+k x\right) e^{-2 x}$ by another factor x in such a way that the final particular solution $y_{p}(x)$ assumes the final form

$$
y_{p}(x)=\left(h x^{3}+k x^{2}\right) e^{-2 x}
$$

and the global solution of the given equation is the function

$$
y(x)=y_{0}(x)+y_{p}(x),
$$

having no pair of similar terms. Whereas the arbitrary constants A, B of $y_{0}(x)$ can be obtained through the initial conditions, the coefficients h, k of $y_{p}(x)$ have to be obtained by imposing that $y_{p}(x)$ (together with its derivatives) satisfies the given non-homogeneous equation. The derivatives of $y_{p}(x)$ are

$$
\begin{aligned}
& y_{p}^{\prime}(x)=3 h x^{2} e^{-2 x}-2 h x^{3} e^{-2 x}+2 k x e^{-2 x}-2 k x^{2} e^{-2 x} \\
& y_{p}^{\prime \prime}(x)=6 h x e^{-2 x}-12 h x^{2} e^{-2 x}+4 h x^{3} e^{-2 x}+2 k e^{-2 x}-8 k x e^{-2 x}+4 k x^{2} e^{-2 x}
\end{aligned}
$$

that, inserted into the given equation, give the equality

$$
\begin{gathered}
6 h x e^{-2 x}-12 h x^{2} e^{-2 x}+4 h x^{3} e^{-2 x}+2 k e^{-2 x}-8 k x e^{-2 x}+4 k x^{2} e^{-2 x}+ \\
+4\left(3 h x^{2} e^{-2 x}-2 h x^{3} e^{-2 x}+2 k x e^{-2 x}-2 k x^{2} e^{-2 x}\right)+4\left(h x^{3} e^{-2 x}+k x^{2} e^{-2 x}\right)=6 x e^{-2 x}-2 e^{-2 x},
\end{gathered}
$$

from which, after the semplifications (according to the colors)

$$
\begin{gathered}
6 h x e^{-2 x}=12 h x^{2} e^{-2 x} \pm 4 h x^{3} e^{-2 x}+2 k e^{-2 x}=8 k x e^{-2 x}+4 k x^{2} e^{-2 x}+ \\
\pm 12 h x^{2} e^{-2 x}=8 h x^{3} e^{-2 x}+8 k x e^{-2 x}=8 k x^{2} e^{-2 x} \neq 4 h x^{3} e^{-2 x}+4 k x^{2} e^{-2 x}=6 x e^{-2 x}-2 e^{-2 x},
\end{gathered}
$$

we get

$$
6 h x e^{-2 x}+2 k e^{-2 x}=6 x e^{-2 x}-2 e^{-2 x},
$$

that is the equalities $6 h=6,2 k=-2$ between the corresponding coefficients and then $h=1, k=-1$.
The solution of the given differential equation is then

$$
y(x)=A e^{-2 x}+B x e^{-2 x}+x^{3} e^{-2 x}-x^{2} e^{-2 x}
$$

whose first derivative is

$$
y^{\prime}(x)=-2 A e^{-2 x}+B e^{-2 x}-2 B x e^{-2 x}+3 x^{2} e^{-2 x}-2 x^{3} e^{-2 x}-2 x e^{-2 x}+2 x^{2} e^{-2 x}
$$

from which, by imposing the initial conditions $y(0)=1, y^{\prime}(0)=-1$ of the Cauchy problem, the system

$$
\left\{\begin{array}{ccc}
A & = & 1 \\
-2 A+B & = & -1
\end{array}\right.
$$

follows, having solution $A=1, B=1$. The solution of the given Cauchy problem is then

$$
y(x)=e^{-2 x}+x e^{-2 x}+x^{3} e^{-2 x}-x^{2} e^{-2 x} .
$$

Exercise 3. The Lagrangian function $\mathcal{L}(x, y, z ; \lambda)$ associated to the given optimization problem is

$$
\mathcal{L}(x, y, z ; \lambda)=3 x-3 y+2 z+\lambda\left(x^{2}-y^{2}-z^{2}+3 x+z+11\right),
$$

from which the first order conditions

$$
\left\{\begin{array}{l}
3+2 \lambda x+3 \lambda=0 \\
-3-2 \lambda y=0 \\
2-2 \lambda z+\lambda=0 \\
x^{2}-y^{2}-z^{2}+3 x+z+3=0
\end{array}\right.
$$

follow. From the first, second, and third equation, we get

$$
x=-\frac{3 \lambda+3}{2 \lambda}, \quad y=-\frac{3}{2 \lambda}, \quad z=\frac{\lambda+2}{2 \lambda},
$$

respectively, that, inserted into the fourth equation, give

$$
\left(-\frac{3 \lambda+3}{2 \lambda}\right)^{2}-\left(-\frac{3}{2 \lambda}\right)^{2}-\left(\frac{\lambda+2}{2 \lambda}\right)^{2}-\frac{9 \lambda+9}{2 \lambda}+\frac{\lambda+2}{2 \lambda}+11=0 \quad \Longrightarrow \quad \frac{36 \lambda^{2}-4}{4 \lambda^{2}}=0
$$

where $\lambda \neq 0$ because $\lambda=0$ can not be a Lagrange's multiplier. From $36 \lambda^{2}-4=0$, we get $\lambda= \pm 1 / 3$ and then the optimal points $(x, y, z ; \lambda)$ having coordinates

$$
A=\left(-6,-\frac{9}{2}, \frac{7}{2} ; \frac{1}{3}\right) \quad \text { and } \quad B=\left(3, \frac{9}{2},-\frac{5}{2} ;-\frac{1}{3}\right) .
$$

The bordered hessian matrix of this optimization problem is

$$
\bar{H}(x, y, z ; \lambda)=\left(\begin{array}{cccc}
0 & 2 x+3 & -2 y & 1-2 z \\
2 x+3 & 2 \lambda & 0 & 0 \\
-2 y & 0 & -2 \lambda & 0 \\
1-2 z & 0 & 0 & -2 \lambda
\end{array}\right)
$$

and we remind the general second order conditions based on the analysis of the bordered hessian matrix.
Given a square matrix \bar{H} of order n and a positive integer number $k \leqslant n$, the minor matrix consisting of the first k rows and the first k columns of \bar{H} is called leading principal minor of order k included in the matrix \bar{H}.

In order to fix the ideas, we consider for example a square matrix of order 5

$$
\bar{H}=\left(\begin{array}{ccccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right),
$$

in which we highlight all leading principal minors, from the order 1 until the highest possible order 5

and we denote by \mathcal{H}_{k} the determinant of the leading principal minor of order k included in the matrix \bar{H}.
The general second order conditions based on the analysis of the bordered hessian matrix \bar{H} now read in the following way. Given the optimization problem consisting of optimizing a function depending on n variables subject to $p<n$ constraints, we consider the bordered hessian matrix $\bar{H}(P)$ corresponding to the optimization problem, evaluated in an optimal point P determined by means of the first order conditions. We then have that

- if it yields

$$
\begin{gather*}
(-1)^{p+1} \mathcal{H}_{2 p+1}(P)>0, \\
(-1)^{p+2} \mathcal{H}_{2 p+2}(P)>0, \\
(-1)^{p+3} \mathcal{H}_{2 p+3}(P)>0, \tag{6a}\\
\vdots \\
(-1)^{n} \mathcal{H}_{n+p}(P)>0,
\end{gather*}
$$

the point P is the maximum point;

- if it yields

$$
\begin{gather*}
(-1)^{p} \mathcal{H}_{2 p+1}(P)>0, \\
(-1)^{p} \mathcal{H}_{2 p+2}(P)>0, \\
(-1)^{p} \mathcal{H}_{2 p+3}(P)>0, \tag{6b}\\
\vdots \\
(-1)^{p} \mathcal{H}_{n+p}(P)>0,
\end{gather*}
$$

the point P is the minimum point.
It is important to point out that conditions (6) are sufficient conditions, only, and it is also possible that they do not hold. If conditions (6) do not hold, we have to conclude that the nature of the optimal point can not be determined by means of the second order conditions (6), and conditions of higher order are have to be studied.

In the exercise of the exam, we have the bordered hessian matrices evaluated in the two optimal points A, B

$$
\bar{H}(A)=\left(\begin{array}{cccc}
0 & -9 & 9 & -6 \\
-9 & 2 / 3 & 0 & 0 \\
9 & 0 & -2 / 3 & 0 \\
-6 & 0 & 0 & -2 / 3
\end{array}\right) \quad \text { and } \quad \bar{H}(B)=\left(\begin{array}{cccc}
0 & 9 & -9 & 6 \\
9 & -2 / 3 & 0 & 0 \\
-9 & 0 & 2 / 3 & 0 \\
6 & 0 & 0 & 2 / 3
\end{array}\right)
$$

Since we have $n=3$ variables and $p=1$ constraint, we have $2 p+1=3$ and $n+p=4$, that is we have to compute the determinant of the leading principal minors of order 3 and of order 4 of the bordered hessian matrices $\bar{H}(A), \bar{H}(B)$ evaluated in the optimal points.

The leading principal minors of order 3 and of order 4 of $\bar{H}(A)$ have determinant

$$
\operatorname{det}\left(\begin{array}{ccc}
0 & -9 & 9 \\
-9 & 2 / 3 & 0 \\
9 & 0 & -2 / 3
\end{array}\right)=0
$$

and

$$
\operatorname{det} \bar{H}(A)=16>0,
$$

that is the leading principal minors $\mathcal{H}_{3}(A), \mathcal{H}_{4}(A)$ fullfil neither conditions (6a), nor conditions (6b), from which we can conclude that the nature of the optimal point A can not be determined by means of the second order conditions at disposal. By observing that the elements of the bordered hessian matrices $\bar{H}(B)$ have the opposite sign with respect to the elements of the bordered hessian matrices $\bar{H}(A)$, we conclude that not even the nature of the optimal point B can be studied by means of the second order conditions at disposal.

MATHEMATICS FOR FINANCE

April 2024, the 15th

Surname

Name

\qquad
ID Number

Exercise 1. Given the canonical basis $\mathcal{B}_{\mathbb{R}^{4}}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}, \boldsymbol{e}_{4}\right\}$ of the vector spaces \mathbb{R}^{4}, and the linear application $L: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ acting on the basis vectors of \mathbb{R}^{4} according the transformation laws

$$
\left\{\begin{array}{l}
L\left(\boldsymbol{e}_{1}\right)=\boldsymbol{e}_{1}+7 \boldsymbol{e}_{2}-\boldsymbol{e}_{3}-2 \boldsymbol{e}_{4} \\
L\left(\boldsymbol{e}_{2}\right)=-3 \boldsymbol{e}_{2}-6 \boldsymbol{e}_{4} \\
L\left(\boldsymbol{e}_{3}\right)=\boldsymbol{e}_{2}+2 \boldsymbol{e}_{4} \\
L\left(\boldsymbol{e}_{4}\right)=-\boldsymbol{e}_{1}-4 \boldsymbol{e}_{2}-4 \boldsymbol{e}_{4}
\end{array}\right.
$$

1) write the matrix A associated to the linear application L with respect to the given basis;
2) find the subspaces kernel and image of the linear application L determining their dimension and a basis for both subspaces;
3) find the orthogonal projection of the vector $\boldsymbol{u}=(5,3,-12,7)$ on the subspace image of L.

Let us consider the linear application $\tilde{L}: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ defined by the transformation laws of the components

$$
\tilde{L}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{3},-x_{1}+x_{4}, x_{2}+x_{4}, x_{1}+x_{3}\right),
$$

where in the vector space \mathbb{R}^{4} the same basis $\mathcal{B}_{\mathbb{R}^{4}}$ is fixed as before.
4) Write the matrix B associated to the linear application \tilde{L} with respect to the given basis and determine the matrix, denoted by M, associated to the composition of linear applications $L \circ \tilde{L}$ (matrix product $A B$).
5) Verify whether the matrix M is diagonalizable.

If M is diagonalizable,
6) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by \mathcal{D} and write the matrix C of the basis change such that $C^{-1} M C=\mathcal{D}$;
7) write the diagonal matrix \mathcal{D} (without performing the matrix multiplication $C^{-1} M C$);
8) in the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2 , find an eingenvector \boldsymbol{v} of M which is orthogonal to the vector $\boldsymbol{w}=(-1,-2,5,3)$;
9) find a basis of the subspace orthogonal complement of the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2 .

Exercise 2. Solve the following Cauchy problem

$$
\left\{\begin{array}{l}
y^{\prime \prime}(x)+6 y^{\prime}(x)+9 y(x)=(-2+6 x) e^{-3 x} \\
y(0)=-1 \\
y^{\prime}(0)=1
\end{array}\right.
$$

Exercise 3. Find the optimal points of the function

$$
f(x, y, z)=x-y+z \quad \text { subject to the constraint } \quad 2 x^{2}+y^{2}-x y-z^{2}+z=2 / 7 .
$$

HINT.: from the two equations $\partial \mathcal{L} / \partial x=0$ and $\partial \mathcal{L} / \partial y=0$, you should obtain x, y in terms of λ.

Solution of the exam of the day April 2024, the 15th

Exercise 1.

1) The matrix A is

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
7 & -3 & 1 & -4 \\
-1 & 0 & 0 & 0 \\
-2 & -6 & 2 & -4
\end{array}\right)
$$

obtained by writing in the i-th column the coefficients of the result of $L\left(\boldsymbol{e}_{i}\right)$

$$
\begin{aligned}
& L\left(\boldsymbol{e}_{1}\right)=\boldsymbol{e}_{1}+7 \boldsymbol{e}_{2}-\boldsymbol{e}_{3}-2 \boldsymbol{e}_{4}, \quad L\left(\boldsymbol{e}_{2}\right)=-3 \boldsymbol{e}_{2}-6 \boldsymbol{e}_{4}, \\
& L\left(\boldsymbol{e}_{3}\right)=\boldsymbol{e}_{2}+2 \boldsymbol{e}_{4}, \quad L\left(\boldsymbol{e}_{4}\right)=-\boldsymbol{e}_{1}-4 \boldsymbol{e}_{2}-4 \boldsymbol{e}_{4} .
\end{aligned}
$$

2) The kernel of L is the subspace of \mathbb{R}^{4} containing the vectors $\boldsymbol{k}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}$ such that the equality $L(\boldsymbol{k})=\mathbf{0}$ holds, that is

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
7 & -3 & 1 & -4 \\
-1 & 0 & 0 & 0 \\
-2 & -6 & 2 & -4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

which is an algebraic linear system having rank 3, because

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
7 & -3 & 1 & -4 \\
-1 & 0 & 0 & 0 \\
-2 & -6 & 2 & -4
\end{array}\right)=-1 \operatorname{det}\left(\begin{array}{ccc}
0 & 0 & -1 \\
-3 & 1 & -4 \\
-6 & 2 & -4
\end{array}\right)=(-1)(-1) \operatorname{det}\left(\begin{array}{ll}
-3 & 1 \\
-6 & 2
\end{array}\right)=0
$$

and the minor of order 3

$$
\mathfrak{M}=\left(\begin{array}{ccc}
7 & 1 & -4 \\
-1 & 0 & 0 \\
-2 & 2 & -4
\end{array}\right)
$$

highlighted in the matrix A as shown

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
\left.\begin{array}{|cc|}
\hline 7 \\
-1 \\
-2 \\
-3 & \begin{array}{cc}
1 & -4 \\
0 & 0 \\
2 & -4 \\
\hline
\end{array}
\end{array}\right), ~, ~, ~
\end{array}\right)
$$

has determinant

$$
\operatorname{det} \mathfrak{M}=\operatorname{det}\left(\begin{array}{ccc}
7 & 1 & -4 \\
-1 & 0 & 0 \\
-2 & 2 & -4
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
1 & -4 \\
2 & -4
\end{array}\right)=4 \neq 0 .
$$

By virtue of this minor \mathfrak{M}, we can extract the system

$$
\left\{\begin{array}{l}
7 x_{1}+x_{3}-4 x_{4}=3 t \\
-x_{1}=0 \\
-2 x_{1}+2 x_{3}-4 x_{4}=6 t
\end{array}\right.
$$

where we have given the arbitrary value $x_{2}=t$ to the unknown x_{2} that lays out of the minor \mathfrak{M} highlighted in the matrix A. The kernel has then dimension 1 because this linear system has the $\infty^{4-3}=\infty^{1}$ solutions

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
3 \\
0
\end{array}\right) t,
$$

from which we get that a basis vector of the kernel is the vector $\boldsymbol{k}=(0,1,3,0)$, as it can be verified through

$$
L(\boldsymbol{k})=A \boldsymbol{k}=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
7 & -3 & 1 & -4 \\
-1 & 0 & 0 & 0 \\
-2 & -6 & 2 & -4
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
3 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right) .
$$

The image of L is spanned by all those column vectors having some component contained inside the minor highlighted in the matrix A, that is we have the basis of the image

$$
\mathcal{B}_{I m(L)}=\boldsymbol{w}_{1}=\left\{\left(\begin{array}{c}
1 \\
7 \\
-1 \\
-2
\end{array}\right), \quad \boldsymbol{w}_{2}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right), \quad \boldsymbol{w}_{3}=\left(\begin{array}{l}
1 \\
4 \\
0 \\
4
\end{array}\right)\right\}
$$

that is the first, third, and fourth column of A, where the fourth column has been taken with the opposite sign.
3) The orthogonal projection of the vector \boldsymbol{u} on the image of L is the vector, that we denote by \boldsymbol{p} belonging to the image, such that it yields

$$
\begin{equation*}
\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{1}\right\rangle=0, \quad\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{2}\right\rangle=0, \quad\left\langle\boldsymbol{u}-\boldsymbol{p}, \boldsymbol{w}_{3}\right\rangle=0 . \tag{7}
\end{equation*}
$$

By expanding the vector $\boldsymbol{p} \in \operatorname{Im}(L)$ as linear combination of the basis vectors $\boldsymbol{w}_{1}, \boldsymbol{w}_{2}, \boldsymbol{w}_{3}$ of the image, that is

$$
\boldsymbol{p}=\alpha \boldsymbol{w}_{1}+\beta \boldsymbol{w}_{2}+\gamma \boldsymbol{w}_{3},
$$

we have

$$
\boldsymbol{u}-\boldsymbol{p}=\left(\begin{array}{c}
5 \\
3 \\
-12 \\
7
\end{array}\right)-\alpha\left(\begin{array}{c}
1 \\
7 \\
-1 \\
-2
\end{array}\right)-\beta\left(\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right)-\gamma\left(\begin{array}{l}
1 \\
4 \\
0 \\
4
\end{array}\right)=\left(\begin{array}{c}
5-\alpha-\gamma \\
3-7 \alpha-\beta-4 \gamma \\
-12+\alpha \\
7+2 \alpha-2 \beta-4 \gamma
\end{array}\right)
$$

by virtue of which the three equations (7) assume the form of the linear system

$$
\left\{\begin{array}{l}
55 \alpha+3 \beta+21 \gamma=24 \\
3 \alpha+5 \beta+12 \gamma=17 \\
7 \alpha+4 \beta+11 \gamma=15
\end{array}\right.
$$

in which the third equation has been divided by 3 . By subtracting the third equation multiplied by 3 from the first equation multiplied by 4 , we get the equation $199 \alpha+51 \gamma=51$, whereas by subtracting the second equation multiplied by 4 from the third equation multiplied by 5 , we get the equation $23 \alpha+7 \gamma=7$.

By applying Cramer's rule to the unknown α of the system

$$
\left\{\begin{array}{l}
199 \alpha+51 \gamma=51 \\
23 \alpha+7 \gamma=7,
\end{array}\right.
$$

we get $\alpha=0$ and then $\beta=1, \gamma=1$, from which the orthogonal projection $\boldsymbol{p}=(1,5,0,6)$ follows.
4) The matrix B associated to the linear application $\tilde{L}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{3},-x_{1}+x_{4}, x_{2}+x_{4}, x_{1}+x_{3}\right)$ is the matrix

$$
B=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)
$$

because it reproduces the given transformation laws of \tilde{L}, that is

$$
\tilde{L}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
x_{3} \\
-x_{1}+x_{4} \\
x_{2}+x_{4} \\
x_{1}+x_{3}
\end{array}\right) .
$$

From the matrix B, one gets the matrix M associated to the product of linear applications in the order $L \tilde{L}$

$$
M=A B=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
7 & -3 & 1 & -4 \\
-1 & 0 & 0 & 0 \\
-2 & -6 & 2 & -4
\end{array}\right)\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0
\end{array}\right)=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & 1 & 3 & -2 \\
0 & 0 & -1 & 0 \\
2 & 2 & -6 & -4
\end{array}\right) .
$$

$5,6)$ In order to verify whether the matrix M, which is an endomorphism of \mathbb{R}^{4}, is diagonalizable, we have to extablish whether there exists a basis of the vector space \mathbb{R}^{4} consisting of four eigenvectors of M, that is we have to verify, in other words, whether there exist four linearly independent eigenvectors of M, which are basis eigenvectors of their corresponding eigenspaces, denoted by $\mathbb{E}\left(\lambda_{i}\right)$, where λ_{i} represents an eigenvalue of M.

Due to the expansion of the determinant according to the first row, the characteristic polynomial of M is

$$
\begin{gathered}
\operatorname{det}(M-\lambda \mathbb{I})=\operatorname{det}\left(\begin{array}{cccc}
-1-\lambda & 0 & 0 & 0 \\
-1 & 1-\lambda & 3 & -2 \\
0 & 0 & -1-\lambda & 0 \\
2 & 2 & -6 & -4-\lambda
\end{array}\right)=(-1-\lambda) \operatorname{det}\left(\begin{array}{ccc}
1-\lambda & 3 & -2 \\
0 & -1-\lambda & 0 \\
2 & -6 & -4-\lambda
\end{array}\right)= \\
=(-1-\lambda)(-1-\lambda) \operatorname{det}\left(\begin{array}{cc}
1-\lambda & -2 \\
2 & -4-\lambda
\end{array}\right)=\lambda(\lambda+3)(\lambda+1)^{2},
\end{gathered}
$$

whose zeros are:

- the simple ${ }^{3}$ eigenvalues $\lambda=0$ and $\lambda=-3$,
- the eigenvalue $\lambda=-1$, having algebraic multiplicity 2 .

To the simple eigenvalue $\lambda=0$ we associate the linear system $(M-0 \mathbb{I}) \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & 1 & 3 & -2 \\
0 & 0 & -1 & 0 \\
2 & 2 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right),
$$

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M

$$
M=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
\begin{array}{|ccc|}
\hline-1 & 1 & 3 \\
0 & 0 & -1 \\
2 & 2 & -6 \\
\hline
\end{array} & -2 \\
-4
\end{array}\right),
$$

from which it follows that the system has ∞^{1} solutions, and the eigenspace $\mathbb{E}(0)$ has dimension 1 .

[^2]By virtue of the highlighted minor matrix, we put $x_{4}=t$ and solve the system

$$
\left\{\begin{array}{l}
-x_{1}+x_{2}+3 x_{3}=2 t \\
-x_{3}=0 \\
2 x_{1}+2 x_{2}-6 x_{3}=4 t
\end{array}\right.
$$

from which we get $x_{1}=x_{3}=0, x_{2}=2 t$ and then the first eigenvector $\boldsymbol{u}_{(0)}=(0,2,0,1)$ as basis eigenvector of the eigenspace $\mathbb{E}(0)$, satisfying effectively the equality

$$
\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & 1 & 3 & -2 \\
0 & 0 & -1 & 0 \\
2 & 2 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right)=0\left(\begin{array}{l}
0 \\
2 \\
0 \\
1
\end{array}\right), \quad \text { that is } \quad M \boldsymbol{u}_{(0)}=0 \boldsymbol{u}_{(0)}
$$

To the simple eigenvalue $\lambda=-3$, we associate the linear system $[M-(-3) \mathbb{I}] \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
-1 & 4 & 3 & -2 \\
0 & 0 & 2 & 0 \\
2 & 2 & -6 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

having rank 3 by virtue of the following minor matrix of order 3 highlighted in $M+3 \mathbb{I}$

$$
M+3 \mathbb{I}=\left(\begin{array}{cccc}
2 & 0 & 0 & 0 \\
\begin{array}{|ccc|}
\hline-1 & 4 & 3 \\
0 & 0 & 2 \\
2 & 2 & -6 \\
\hline
\end{array} & -2 \\
-1
\end{array}\right)
$$

from which it follows that the system has ∞^{1} solutions, and the eigenspace $\mathbb{E}(-3)$ has dimension 1 .
By virtue of the highlighted minor matrix, we put $x_{4}=t$ and solve the system

$$
\left\{\begin{array}{l}
-x_{1}+4 x_{2}+3 x_{3}=2 t \\
2 x_{3}=0 \\
2 x_{1}+2 x_{2}-6 x_{3}=t
\end{array}\right.
$$

from which we get $x_{2}=t / 2$ and then, by eliminating the fractions, the second eigenvector $\boldsymbol{u}_{(-3)}=(0,1,0,2)$ as basis eigenvector of the eigenspace $\mathbb{E}(-3)$, satisfying effectively the equality

$$
\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & 1 & 3 & -2 \\
0 & 0 & -1 & 0 \\
2 & 2 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right)=-3\left(\begin{array}{l}
0 \\
1 \\
0 \\
2
\end{array}\right), \quad \text { that is } \quad M \boldsymbol{u}_{(-3)}=-3 \boldsymbol{u}_{(-3)}
$$

To the eigenvalue $\lambda=-1$, having algebraic multiplicity 2 , we associate the system $(M+\mathbb{I}) \boldsymbol{u}=\mathbf{0}$, that is

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
-1 & 2 & 3 & -2 \\
0 & 0 & 0 & 0 \\
2 & 2 & -6 & -3
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

having rank 2 by virtue of the following minor matrix of order 2 highlighted in $M+\mathbb{I}$

$$
M+\mathbb{I}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\begin{array}{|ccc|}
\hline-1 & 2 & 3
\end{array} & -2 \\
0 & 0 & 0 & 0 \\
\hline 2 & 2 & -6 & -3
\end{array}\right)
$$

from which it follows that the system has ∞^{2} solutions, and the eigenspace $\mathbb{E}(-1)$ has dimension 2 .
By virtue of the highlighted minor matrix, we put $x_{3}=\alpha, x_{4}=\beta$ and solve the system

$$
\left\{\begin{array}{l}
-x_{1}+2 x_{2}=-3 \alpha+2 \beta \\
2 x_{1}+2 x_{2}=6 \alpha+3 \beta
\end{array}\right.
$$

from which we get $x_{1}=3 \alpha+\beta / 3, x_{2}=7 \beta / 6$ and then the last two eigenvectors

$$
\boldsymbol{u}_{(-1)}^{(a)}=(3,0,1,0) \quad \text { and } \quad \boldsymbol{u}_{(-1)}^{(b)}=(2,7,0,6)
$$

as basis eigenvectors of the eigenspace $\mathbb{E}(-1)$, satisfying effectively the equalities

$$
\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & 1 & 3 & -2 \\
0 & 0 & -1 & 0 \\
2 & 2 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right)=-\left(\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
-1 & 1 & 3 & -2 \\
0 & 0 & -1 & 0 \\
2 & 2 & -6 & -4
\end{array}\right)\left(\begin{array}{l}
2 \\
7 \\
0 \\
6
\end{array}\right)=-\left(\begin{array}{l}
2 \\
7 \\
0 \\
6
\end{array}\right)
$$

that is $M \boldsymbol{u}_{(-1)}^{(a)}=-\boldsymbol{u}_{(-1)}^{(a)}$ and $M \boldsymbol{u}_{(-1)}^{(b)}=-\boldsymbol{u}_{(-1)}^{(b)}$.
Since the set $\mathcal{B}=\left\{\boldsymbol{u}_{(0)}, \boldsymbol{u}_{(-3)}, \boldsymbol{u}_{(-1)}^{(a)}, \boldsymbol{u}_{(-1)}^{(b)}\right\}$, containing the four eigenvectors of the matrix M, is linearly independent, we conclude that the set \mathcal{B} is a basis of the vector space \mathbb{R}^{4}, and the matrix M is diagonalizable.

The matrix C describing the basis change from the initial basis to the basis of the eigenvectors, with respect to which M assumes diagonal form, is then the one whose columns are the four eigenvectors, that is

$$
C=\left(\begin{array}{cccc}
0 & 0 & 3 & 2 \\
2 & 1 & 0 & 7 \\
0 & 0 & 1 & 0 \\
1 & 2 & 0 & -6
\end{array}\right)
$$

7) Since we have written the eigenvectors in the matrix C in the sequence corresponding to the eigenvalues in the order $\lambda=0,-3,-1,-1$, respectively, it follows that the diagonal matrix \mathcal{D}, associated to M, is

$$
\mathcal{D}=C^{-1} M C=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

8) The eigenspace associated to the eigenvalue having algebraic multiplicity 2 is $\mathbb{E}(-1)$, corresponding to the eigenvalue $\lambda=-1$, spanned by the two eigenvectors $\boldsymbol{u}_{(-1)}^{(a)}, \boldsymbol{u}_{(-1)}^{(b)}$. The vectors of this subspace have the parametric form $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(3 \alpha+2 \beta, 7 \beta, \alpha, 6 \beta)$, and the general vector \boldsymbol{v} of this subspace, orthogonal to the given vector $\boldsymbol{w}=(-1,-2,5,3)$, is the vector $\boldsymbol{v}=(3 \alpha+2 \beta, 7 \beta, \alpha, 6 \beta)$ such that the scalar product $\langle\boldsymbol{v}, \boldsymbol{w}\rangle$ vanishes, that is the equality $\langle\boldsymbol{v}, \boldsymbol{w}\rangle=\langle(3 \alpha+2 \beta, 7 \beta, \alpha, 6 \beta),(-3,1,4,-1)\rangle=0$ holds, from which we get the relation $\alpha+\beta=0$. By choosing the particular solution $\alpha=1, \beta=-1$, we finally obtain the particular vector $\boldsymbol{v}=(1,-7,1,-6)$ belonging to the eigenspace $\mathbb{E}(-1)$ and orthogonal to the given vector $\boldsymbol{w}=(-1,-2,5,3)$.
9) The eigenspace $\mathbb{E}(-1)$ associated to the eigenvalue having algebraic multiplicity 2 is spanned by the two eigenvectors $\boldsymbol{u}_{(-1)}^{(a)}, \boldsymbol{u}_{(-1)}^{(b)}$ and its orthogonal complement consists of all vectors $\boldsymbol{v}^{\perp}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ orthogonal
to every vector of $\mathbb{E}(-1)$ itself. By virtue of the theorem of the orthogonal complement, it is actually sufficient that the vectors $\boldsymbol{v}^{\perp}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ to be orthogonal to the basis eigenvectors $\boldsymbol{u}_{(-1)}^{(a)}, \boldsymbol{u}_{(1)}^{(1)}$ of $\mathbb{E}(-1)$, only.

Therefore, we impose the orthogonality conditions

$$
\left\langle\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \boldsymbol{u}_{(-1)}^{(a)}\right\rangle=0 \quad \text { and } \quad\left\langle\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \boldsymbol{u}_{(-1)}^{(b)}\right\rangle=0,
$$

which are equivalent to the linear system having rank 2 and 4 unknowns $y_{3}=-3 y_{1}, 6 y_{4}=-2 y_{1}-7 y_{2}$.
Since this system has the ∞^{2} solutions $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=(3 \alpha, 6 \beta,-9 \alpha,-\alpha-7 \beta)$, we can conclude that the basis vectors of the orthogonal complement of the eigenspace $\mathbb{E}(-1)$ are

$$
\boldsymbol{z}_{1}=(3,0,-9,-1) \quad \text { and } \quad \boldsymbol{z}_{2}=(0,6,0,-7),
$$

effectively satisfying the orthogonality conditions with the basis eigenvectors $\boldsymbol{u}_{(-1)}^{(a)}, \boldsymbol{u}_{(-1)}^{(b)}$ of $\mathbb{E}(-1)$

$$
\left\langle\boldsymbol{z}_{1}, \boldsymbol{u}_{(-1)}^{(a)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{1}, \boldsymbol{u}_{(-1)}^{(b)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{2}, \boldsymbol{u}_{(-1)}^{(a)}\right\rangle=0, \quad\left\langle\boldsymbol{z}_{2}, \boldsymbol{u}_{(-1)}^{(b)}\right\rangle=0 .
$$

Exercise 2.

The homogeneous equation associated to the given equation is $y^{\prime \prime}(x)+6 y^{\prime}(x)+9 y(x)=0$, to which the algebraic equation $\lambda^{2}+6 \lambda+9=0$ corresponds, having the solution $\lambda=-3$ with algebraic multiplicity 2 .

The solution, that we denote by $y_{0}(x)$, of the homogeneous equation is then

$$
y_{0}(x)=A e^{-3 x}+B x e^{-3 x},
$$

and since the right-hand side of the given non-homogeneous equation is $6 x e^{-3 x}-2 e^{-3 x}$, that is the product of a polynomial of first degree times the exponential $e^{-3 x}$, we write the particular solution $y_{p}(x)$ in the same form

$$
y_{p}(x)=(h x+k) e^{-3 x} .
$$

Since this $y_{p}(x)$ has similar terms to the ones of the solution of the homogeneous equation, we multiply $y_{p}(x)$ times x and obtain the new particular solution

$$
y_{p}(x)=\left(h x^{2}+k x\right) e^{-3 x},
$$

whose term with k is similar to the term $B x e^{-3 x}$ of the solution of the homogeneous equation. We then multiply $\left(h x^{2}+k x\right) e^{-3 x}$ by another factor x in such a way that the final particular solution $y_{p}(x)$ assumes the final form

$$
y_{p}(x)=\left(h x^{3}+k x^{2}\right) e^{-3 x}
$$

and the global solution of the given equation is the function

$$
y(x)=y_{0}(x)+y_{p}(x),
$$

having no pair of similar terms. Whereas the arbitrary constants A, B of $y_{0}(x)$ can be obtained through the initial conditions, the coefficients h, k of $y_{p}(x)$ have to be obtained by imposing that $y_{p}(x)$ (together with its derivatives) satisfies the given non-homogeneous equation. The derivatives of $y_{p}(x)$ are

$$
\begin{aligned}
& y_{p}^{\prime}(x)=3 h x^{2} e^{-3 x}-3 h x^{3} e^{-3 x}+2 k x e^{-3 x}-3 k x^{2} e^{-3 x} \\
& y_{p}^{\prime \prime}(x)=6 h x e^{-3 x}-18 h x^{2} e^{-3 x}+9 h x^{3} e^{-3 x}+2 k e^{-3 x}-12 k x e^{-3 x}+9 k x^{2} e^{-3 x},
\end{aligned}
$$

that, inserted into the given equation, give the equality

$$
\begin{gathered}
6 h x e^{-3 x}-18 h x^{2} e^{-3 x}+9 h x^{3} e^{-3 x}+2 k e^{-3 x}-12 k x e^{-3 x}+9 k x^{2} e^{-3 x}+ \\
+6\left(3 h x^{2} e^{-3 x}-3 h x^{3} e^{-3 x}+2 k x e^{-3 x}-3 k x^{2} e^{-3 x}\right)+9\left(h x^{3} e^{-3 x}+k x^{2} e^{-3 x}\right)=6 x e^{-3 x}-2 e^{-3 x},
\end{gathered}
$$

from which, after the semplifications (according to the colors)

$$
\begin{gathered}
6 h x e^{-3 x}=18 h x^{2} e^{-3 x} \neq 9 h x^{3} e^{-3 x}+2 k e^{-3 x}=12 k x e^{-3 x} \neq 9 k x^{2} e^{-3 x}+ \\
\pm 18 h x^{2} e^{-3 x}=18 h x^{3} e^{-3 x} \neq 12 k x e^{-3 x}=18 k x^{2} e^{-3 x} \neq 9 h x^{3} e^{-3 x} \neq 9 k x^{2} e^{-3 x}=6 x e^{-3 x}-2 e^{-3 x},
\end{gathered}
$$

we get

$$
6 h x e^{-3 x}+2 k e^{-3 x}=6 x e^{-3 x}-2 e^{-3 x},
$$

that is the equalities $6 h=6,2 k=-2$ between the corresponding coefficients and then $h=1, k=-1$.
The solution of the given differential equation is then

$$
y(x)=A e^{-3 x}+B x e^{-3 x}+x^{3} e^{-3 x}-x^{2} e^{-3 x}
$$

whose first derivative is

$$
y^{\prime}(x)=-3 A e^{-3 x}+B e^{-3 x}-3 B x e^{-3 x}+3 x^{2} e^{-3 x}-3 x^{3} e^{-3 x}-2 x e^{-3 x}+3 x^{2} e^{-3 x}
$$

from which, by imposing the initial conditions $y(0)=-1, y^{\prime}(0)=1$ of the Cauchy problem, the system

$$
\left\{\begin{array}{ccc}
A & = & -1 \\
-3 A+B & = & 1
\end{array}\right.
$$

follows, having solution $A=-1, B=-2$. The solution of the given Cauchy problem is then

$$
y(x)=-e^{-3 x}-2 x e^{-3 x}+x^{3} e^{-3 x}-x^{2} e^{-3 x} .
$$

Exercise 3. The Lagrangian function $\mathcal{L}(x, y, z ; \lambda)$ associated to the given optimization problem is

$$
\mathcal{L}(x, y, z ; \lambda)=x-y+z+\lambda\left(2 x^{2}+y^{2}-x y-z^{2}+z-2 / 7\right),
$$

from which the first order conditions

$$
\left\{\begin{array}{l}
1+4 \lambda x-\lambda y=0 \\
-1+2 \lambda y-\lambda x=0 \\
1-2 \lambda z+\lambda=0 \\
2 x^{2}+y^{2}-x y-z^{2}+z-2 / 7=0
\end{array}\right.
$$

follow. If we solve the system consisting of the first two equations

$$
\left\{\begin{array}{l}
4 \lambda x-\lambda y=-1 \\
-\lambda x+2 \lambda y=1
\end{array}\right.
$$

with respect to x, y, we get

$$
x=-\frac{1}{7 \lambda} \quad \text { and } \quad y=\frac{3}{7 \lambda},
$$

whereas from the third equation, we get

$$
z=\frac{\lambda+1}{2 \lambda},
$$

that, inserted into the fourth equation, give

$$
\frac{2}{49 \lambda^{2}}+\frac{9}{49 \lambda^{2}}+\frac{3}{49 \lambda^{2}}-\frac{\lambda^{2}+2 \lambda+1}{4 \lambda^{2}}+\frac{\lambda+1}{2 \lambda}-\frac{2}{7}=0 \quad \Longrightarrow \quad \frac{1-\lambda^{2}}{4 \lambda^{2}}=0
$$

where $\lambda \neq 0$ because $\lambda=0$ can not be a Lagrange's multiplier. From $1-\lambda^{2}=0$, we get $\lambda= \pm 1$ and then the optimal points $(x, y, z ; \lambda)$ having coordinates

$$
A=\left(-\frac{1}{7}, \frac{3}{7}, 1 ; 1\right) \quad \text { and } \quad B=\left(\frac{1}{7},-\frac{3}{7}, 0 ;-1\right)
$$

The bordered hessian matrix of this optimization problem is

$$
\bar{H}(x, y, z ; \lambda)=\left(\begin{array}{cccc}
0 & 4 x-y & 2 y-x & 1-2 z \\
4 x-y & 4 \lambda & -\lambda & 0 \\
2 y-x & -\lambda & 2 \lambda & 0 \\
1-2 z & 0 & 0 & -2 \lambda
\end{array}\right)
$$

and we remind the general second order conditions based on the analysis of the bordered hessian matrix.
Given a square matrix \bar{H} of order n and a positive integer number $k \leqslant n$, the minor matrix consisting of the first k rows and the first k columns of \bar{H} is called leading principal minor of order k included in the matrix \bar{H}.

In order to fix the ideas, we consider for example a square matrix of order 5

$$
\bar{H}=\left(\begin{array}{ccccc}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

in which we highlight all leading principal minors, from the order 1 until the highest possible order 5

$$
\left(\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right), \quad\left(\begin{array}{lllll}
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet & \bullet
\end{array}\right)
$$

and we denote by \mathcal{H}_{k} the determinant of the leading principal minor of order k included in the matrix \bar{H}.
The general second order conditions based on the analysis of the bordered hessian matrix \bar{H} now read in the following way. Given the optimization problem consisting of optimizing a function depending on n variables subject to $p<n$ constraints, we consider the bordered hessian matrix $\bar{H}(P)$ corresponding to the optimization problem, evaluated in an optimal point P determined by means of the first order conditions. We then have that

- if it yields

$$
\begin{gather*}
(-1)^{p+1} \mathcal{H}_{2 p+1}(P)>0, \\
(-1)^{p+2} \mathcal{H}_{2 p+2}(P)>0, \\
(-1)^{p+3} \mathcal{H}_{2 p+3}(P)>0, \tag{8a}\\
\vdots \\
(-1)^{n} \mathcal{H}_{n+p}(P)>0,
\end{gather*}
$$

the point P is the maximum point;

- if it yields

$$
\begin{gather*}
(-1)^{p} \mathcal{H}_{2 p+1}(P)>0 \\
(-1)^{p} \mathcal{H}_{2 p+2}(P)>0 \\
(-1)^{p} \mathcal{H}_{2 p+3}(P)>0 \tag{8b}\\
\vdots \\
(-1)^{p} \mathcal{H}_{n+p}(P)>0
\end{gather*}
$$

the point P is the minimum point.
It is important to point out that conditions (8) are sufficient conditions, only, and it is also possible that they do not hold. If conditions (8) do not hold, we have to conclude that the nature of the optimal point can not be determined by means of the second order conditions (8), and conditions of higher order are have to be studied.

In the exercise of the exam, we have the bordered hessian matrices evaluated in the two optimal points A, B

$$
\bar{H}(A)=\left(\begin{array}{cccc}
0 & -1 & 1 & -1 \\
-1 & 4 & -1 & 0 \\
1 & -1 & 2 & 0 \\
-1 & 0 & 0 & -2
\end{array}\right) \quad \text { and } \quad \bar{H}(B)=\left(\begin{array}{cccc}
0 & 1 & -1 & 1 \\
1 & -4 & 1 & 0 \\
-1 & 1 & -2 & 0 \\
1 & 0 & 0 & 2
\end{array}\right)
$$

Since we have $n=3$ variables and $p=1$ constraint, we have $2 p+1=3$ and $n+p=4$, that is we have to compute the determinant of the leading principal minors of order 3 and of order 4 of the bordered hessian matrices $\bar{H}(A), \bar{H}(B)$ evaluated in the optimal points. By virtue of conditions (8a), we have that if it yields

$$
\mathcal{H}_{3}(P)>0 \quad \text { and } \quad \mathcal{H}_{4}(P)<0
$$

the point P is the maximum point; if it yields

$$
\mathcal{H}_{3}(P)<0 \quad \text { and } \quad \mathcal{H}_{4}(P)<0
$$

the point P is the minimum point.
Since we have

$$
\operatorname{det} \bar{H}(A)=\operatorname{det} \bar{H}(B)=1>0
$$

we conclude that the nature of the optimal points A, B can not be studied by means of the second order conditions at disposal.

[^0]: ${ }^{1}$ We remind that an eigenvalue λ of a matrix is called simple eigenvalue if its algebraic multiplicity is 1 .

[^1]: ${ }^{2}$ We remind that an eigenvalue λ of a matrix is called simple eigenvalue if its algebraic multiplicity is 1 .

[^2]: ${ }^{3}$ We remind that an eigenvalue λ of a matrix is called simple eigenvalue if its algebraic multiplicity is 1 .

