
MATHEMATICS FOR FINANCE Exam

January 2024, the 16th

Surname Name

ID Number

Exercise 1. Given the canonical basis BR4 = {e1, e2, e3, e4} of the vector spaces R4, and the linear applica-

tion L : R4 −→ R
4 acting on the basis vectors of R4 according the transformation laws















L(e1) = 2e1 − e2 − e3 + 5e4

L(e2) = e1 + e2 + e4

L(e3) = 2e1 + 4e4

L(e4) = 2e1 − e2 − e3 + 5e4,

1) write the matrix A associated to the linear application L with respect to the given basis;

2) find the subspaces kernel and image of the linear application L determining their dimension and a basis for

both subspaces;

3) find the orthogonal projection of the vector u = (−2, 1, 1, 1) on the subspace image of L.

Let us consider the linear application L̃ : R4 −→ R
4 defined by the transformation laws of the components

L̃(x1, x2, x3, x4) = (x1 − x3, x2 − x3, x1 − x4,−x1),

where in the vector space R
4 the same basis BR4 is fixed as before.

4) Write the matrix B associated to the linear application L̃ with respect to the given basis and determine the

matrix, denoted by M , associated to the composition of linear applications L ◦ L̃ (matrix product AB).

5) Verify whether the matrix M is diagonalizable.

If M is diagonalizable,

6) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by D and write

the matrix C of the basis change such that C−1MC = D;

7) write the diagonal matrix D (without performing the matrix multiplication C−1MC);

8) in the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2, find an

eingenvector v of M which is orthogonal to the vector w = (0, 0, 2, 1);

9) find a basis of the subspace orthogonal complement of the eigenspace of the matrix M corresponding to

the eigenvalue having algebraic multiplicity 2.

Exercise 2. Solve the following Cauchy problem






4y′′(x) + 4y′(x) + y(x) = 3e−x/2

y(0) = −2
y′(0) = 2

Exercise 3. Find the optimal points of the function

f(x, y, z) = x+ 2y − 3z

subject to the constraint 2x2 + y2 − z2 + x+ z = −3



Solution of the exam of the day January 2024, the 16th

Exercise 1.

1) The matrix A is

A =

Ü

2 1 2 2

−1 1 0 −1

−1 0 0 −1

5 1 4 5

ê

,

obtained by writing in columns the coefficients of

2e1 − e2 − e3 + 5e4 , e1 + e2 + e4 , 2e1 + 4e4 , 2e1 − e2 − e3 + 5e4 .

2) The kernel of L is the subspace of R4 containing the vectors k = (x1, x2, x3, x4) ∈ R
4 such that the equality

L(k) = 0 holds, that is
Ü

2 1 2 2

−1 1 0 −1

−1 0 0 −1

5 1 4 5

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

which is an algebraic linear system having rank 3, because

det

Ü

2 1 2 2

−1 1 0 −1

−1 0 0 −1

5 1 4 5

ê

= 2det

Ñ

−1 1 −1

−1 0 −1

5 1 5

é

− 4 det

Ñ

2 1 2

−1 1 −1

−1 0 −1

é

=

= 2

ï

− det

Å

−1 −1

5 5

ã

− det

Å

−1 −1

−1 −1

ãò

− 4

ï

− det

Å

1 2

1 −1

ã

− det

Å

2 1

−1 1

ãò

= 0

and the minor of order 3

M =

Ñ

1 2 2

1 0 −1

0 0 −1

é

,

highlighted in the matrix A as shown

A =

2 1 2 2

−1 1 0 −1

−1 0 0 −1

5 1 4 5

â ì

,

has determinant

detM = det

Ñ

1 2 2

1 0 −1

0 0 −1

é

= − det

Å

1 2

1 0

ã

= 2 6= 0.

By virtue of this minor M, we can extract the system







x2 + 2x3 + 2x4 = −2t
x2 − x4 = t
−x4 = t
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where we have given the arbitrary value x1 = t to the unknown x1 that lays out of the minor M highlighted in the

matrix A. The kernel has then dimension 1 because this linear system has the ∞4−3 = ∞1 solutions

Ü

x1

x2

x3

x4

ê

=

Ü

1

0

0

−1

ê

t,

from which we get that a basis vector of the kernel is the vector k = (1, 0, 0,−1), as it can be verified through

L(k) = Ak =

Ü

2 1 2 2

−1 1 0 −1

−1 0 0 −1

5 1 4 5

êÜ

1

0

0

−1

ê

=

Ü

0

0

0

0

ê

.

The image of L is spanned by all those column vectors having some component contained inside the minor

highlighted in the matrix A, that is we have the basis of the image

BIm(L) = w1 =















Ü

1

1

0

1

ê

, w2 =

Ü

1

0

0

2

ê

, w3 =

Ü

2

−1

−1

5

ê













,

that is the second, third, and fourth column of A, where the third column for w2 has been divided by 2.

3) The orthogonal projection of the vector u on the image of L is the vector, that we denote by p belonging

to the image, such that it yields

〈u− p , w1〉 = 0, 〈u− p , w2〉 = 0, 〈u− p , w3〉 = 0. (1)

By expanding the vector p ∈ Im(L) as linear combination of the basis vectors w1,w2,w3 of the image, that

is

p = αw1 + βw2 + γw3 , (2)

we have

u− p =

Ü

−2

1

1

1

ê

− α

Ü

1

1

0

1

ê

− β

Ü

1

0

0

2

ê

− γ

Ü

2

−1

−1

5

ê

=

á

−2− α− β − 2γ

1− α + γ

1 + γ

1− α− 2β − 5γ

ë

,

by virtue of which the three equations (1) assume the form of the linear system







−3α− 3β − 6γ = 0
−3α− 5β − 12γ = 0
6α + 12β + 31γ = −1.

The sum of the three equations and the subtraction of the first two equations give the two equations

ß

4β + 13γ = −1
β + 3γ = 0,

respectively, from which we get

α = −1, β = 3, γ = −1

and then, from (2), the orthogonal projection p = (0, 0, 1, 0).
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4) The matrix B associated to the linear application L̃(x1, x2, x3, x4) = (x1 − x3, x2 − x3, x1 − x4,−x1) is

the matrix

B =

Ü

1 0 −1 0

0 1 −1 0

1 0 0 −1

−1 0 0 0

ê

,

because it reproduces the given transformation laws of L̃, that is

L̃

Ü

x1

x2

x3

x4

ê

=

Ü

1 0 −1 0

0 1 −1 0

1 0 0 −1

−1 0 0 0

êÜ

x1

x2

x3

x4

ê

=

Ü

x1 − x3

x2 − x3

x1 − x4

−x1

ê

.

From the matrix B, one gets the matrix M associated to the product of linear applications in the order LL̃

M = AB =

Ü

2 1 2 2

−1 1 0 −1

−1 0 0 −1

5 1 4 5

êÜ

1 0 −1 0

0 1 −1 0

1 0 0 −1

−1 0 0 0

ê

=

Ü

2 1 −3 −2

0 1 0 0

0 0 1 0

4 1 −6 −4

ê

.

5,6) In order to verify whether the matrix M , which is an endomorphism of R4, is diagonalizable, we have

to extablish whether there exists a basis of the vector space R
4 consisting of four eigenvectors of M , that is we

have to verify, in other words, whether there exist four linearly independent eigenvectors of M , which are basis

eigenvectors of their corresponding eigenspaces, denoted by E(λi), where λi represents an eigenvalue of M .

Due to the expansion of the determinant according to the second row, the characteristic polynomial of M is

det(M − λI) = det

á

2− λ 1 −3 −2

0 1− λ 0 0

0 0 1− λ 0

4 1 −6 −4− λ

ë

= (1− λ) det

Ñ

2− λ −3 −2

0 1− λ 0

4 −6 −4− λ

é

=

= (1− λ)(1− λ) det

Ç

2− λ −2

4 −4− λ

å

= λ(λ− 1)2 (λ+ 2),

whose zeros are:

• the simple1 eigenvalues λ = 0 and λ = −2,

• the eigenvalue λ = 1, having algebraic multiplicity 2.

To the simple eigenvalue λ = 0 we associate the linear system (M − 0I)u = 0, that is

Ü

2 1 −3 −2

0 1 0 0

0 0 1 0

4 1 −6 −4

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M

M =

2 1 −3 −2

0 1 0 0

0 0 1 0

4 1 −6 −4

â ì

,

1We remind that an eigenvalue λ of a matrix is called simple eigenvalue if its algebraic multiplicity is 1.
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from which it follows that the system has ∞1 solutions, and the eigenspace E(0) has dimension 1.

By virtue of the highlighted minor matrix, we put x4 = t and solve 2x1 + x2 − 3x3 = 2t, x2 = 0, x3 = 0,

from which we get x1 = t and then the first eigenvector u(0) = (1, 0, 0, 1) as basis eigenvector of E(0), satisfying

effectively the equality

Ü

2 1 −3 −2

0 1 0 0

0 0 1 0

4 1 −6 −4

êÜ

1

0

0

1

ê

= 0

Ü

1

0

0

1

ê

, that is Mu(0) = 0u(0).

To the simple eigenvalue λ = −2, we associate the linear system [M − (−2)I]u = 0, that is

Ü

4 1 −3 −2

0 3 0 0

0 0 3 0

4 1 −6 −2

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M + 2I

M + 2I =

4 1 −3 −2

0 3 0 0

0 0 3 0

4 1 −6 −2

à í

,

from which it follows that the system has ∞1 solutions, and the eigenspace E(−2) has dimension 1.

By virtue of the highlighted minor matrix, we put x4 = t and solve 4x1 + x2 − 3x3 = 2t, x2 = 0, x3 = 0,

from which we get x1 = t/2 and then, by eliminating the fraction, the second eigenvector u(−2) = (1, 0, 0, 2) as

basis eigenvector of the eigenspace E(−2), satisfying effectively the equality

Ü

2 1 −3 −2

0 1 0 0

0 0 1 0

4 1 −6 −4

êÜ

1

0

0

2

ê

= −2

Ü

1

0

0

2

ê

, that is Mu(−2) = −2u(−2).

To the eigenvalue λ = 1, having algebraic multiplicity 2, we associate the system (M − I)u = 0, that is

Ü

1 1 −3 −2

0 0 0 0

0 0 0 0

4 1 −6 −5

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 2 by virtue of the following minor matrix of order 2 highlighted in M − I

M − I =

1 1 −3 −2

0 0 0 0

0 0 0 0

4 1 −6 −5

à í

,

from which it follows that the system has ∞2 solutions, and the eigenspace E(1) has dimension 2. By virtue of

the highlighted minor matrix, we put x3 = α, x4 = β and solve x1 + x2 = 3α + 2β, 4x1 + x2 = 6α + 5β, from

which, by subtracting, we get 3x1 = 3α + 3β and then the last two eigenvectors

u
(a)
(1) = (1, 2, 1, 0) and u

(b)
(1) = (1, 1, 0, 1)
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as basis eigenvectors of the eigenspace E(1), satisfying effectively the equalities

Ü

2 1 −3 −2

0 1 0 0

0 0 1 0

4 1 −6 −4

êÜ

1

2

1

0

ê

=

Ü

1

2

1

0

ê

and

Ü

2 1 −3 −2

0 1 0 0

0 0 1 0

4 1 −6 −4

êÜ

1

1

0

1

ê

=

Ü

1

1

0

1

ê

,

that is Mu
(a)
(1) = u

(a)
(1) and Mu

(b)
(1) = u

(b)
(1).

Since the set B = {u(0),u(−2),u
(a)
(1),u

(b)
(1)}, containing the four eigenvectors of the matrix M , is linearly

independent, we conclude that the set B is a basis of the vector space R
4, and the matrix M is diagonalizable.

The matrix C describing the basis change from the initial basis to the basis of the eigenvectors, with respect

to which M assumes diagonal form, is then the one whose columns are the four eigenvectors, that is

C =

Ü

1 1 1 1

0 0 2 1

0 0 1 0

1 2 0 1

ê

.

7) Since we have written the eigenvectors in the matrix C in the sequence corresponding to the eigenvalues in

the order λ = 0,−2, 1, 1, respectively, it follows that the diagonal matrix D, associated to M , is

D = C−1MC =

Ü

0 0 0 0

0 −2 0 0

0 0 1 0

0 0 0 1

ê

.

8) The eigenspace associated to the eigenvalue having algebraic multiplicity 2 is E(1), corresponding to the

eigenvalue λ = 1, spanned by the two eigenvectors u
(a)
(1),u

(b)
(1). The vectors of this subspace have the form

(x1, x2, x3, x4) = (α + β, 2α + β, α, β),

and the vector v of this subspace, orthogonal to the given vector w = (0, 0, 2, 1), is the vector

v = (α + β, 2α + β, α, β)

such that the scalar product 〈v,w〉 vanishes, that is the equality

〈v,w〉 = 〈 (α + β, 2α + β, α, β) , (0, 0, 2, 1) 〉 = 0

holds, from which we get the relation 2α + β = 0. By choosing the particular solution given by α = −1, β = 2,

we finally obtain the particular vector v = (1, 0,−1, 2) belonging to the eigenspace E(1) and orthogonal to the

given vector w = (0, 0, 2, 1).

9) The eigenspace E(1) associated to the eigenvalue having algebraic multiplicity 2 is spanned by the two

eigenvectors u
(a)
(1),u

(b)
(1) and its orthogonal complement consists of all vectors v⊥ = (y1, y2, y3, y4) orthogonal to

every vector of E(1) itself. By virtue of the theorem of the orthogonal complement, it is actually sufficient that

the vectors v⊥ = (y1, y2, y3, y4) to be orthogonal to the basis eigenvectors u
(a)
(1),u

(b)
(1) of E(1), only.

Therefore, we impose the orthogonality conditions

¨

(y1, y2, y3, y4) , u
(a)
(1)

∂

= 0 and
¨

(y1, y2, y3, y4) , u
(b)
(1)

∂

= 0,

which are equivalent to the linear system having rank 2 and 4 unknowns

ß

y1 + 2y2 + y3 = 0
y1 + y2 + y4 = 0,
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from which we extract the system (already uncoupled) corresponding to the unknowns y3, y4

ß

y3 = −y1 − 2y2
y4 = −y1 − y2 .

Since this system has ∞2 solutions having the vector form (y1, y2, y3, y4) = (α, β,−α− 2β,−α−β), we can

conclude that the basis vectors of the orthogonal complement of the eigenspace E(1) are

z1 = (1, 0,−1,−1) and z2 = (0, 1,−2,−1),

effectively satisfying the orthogonality conditions with the basis eigenvectors u
(a)
(1),u

(b)
(1) of E(1)

¨

z1,u
(a)
(1)

∂

= 0,
¨

z1,u
(b)
(1)

∂

= 0,
¨

z2,u
(a)
(1)

∂

= 0,
¨

z2,u
(b)
(1)

∂

= 0.

Exercise 2.

The homogeneous equation associated to the given equation is 4y′′(x) + 4y′(x) + y(x) = 0, to which the

algebraic equation 4λ2 + 4λ+ 1 = 0 corresponds, having the solution λ = −1/2 with algebraic multiplicity 2.

The solution, that we denote by y0(x), of the homogeneous equation is then

y0(x) = Ae−x/2 + Bxe−x/2,

and since the right-hand side of the given non-homogeneous equation is 3e−x/2, that is the product of a constant

(polynomial of zeroth degree) times the exponential e−x/2, we write the particular solution yp(x) in the same

form yp(x) = ke−x/2. Since this yp(x) is similar to the term Ae−x/2 of the solution of the homogeneous equation,

we multiply yp(x) times x and obtain the new particular solution yp(x) = kxe−x/2, which is similar to the term

Bxe−x/2 of the solution of the homogeneous equation. We then multiply kxe−x/2 by another factor x in such a

way that the final particular solution yp(x) assumes the final form yp(x) = kx2e−x/2 and the global solution of

the given equation is the function y(x) = y0(x) + yp(x), having no pair of similar terms. Whereas the arbitrary

constants A,B of y0(x) can be obtained through the initial conditions, the coefficient k of yp(x) has to be obtained

by imposing that yp(x) (together with its derivatives) satisfies the given non-homogeneous equation.

The derivatives of yp(x) are

y′p(x) = 2kxe−x/2 −
k

2
x2e−x/2 and y′′p(x) = 2ke−x/2 − 2kxe−x/2 +

k

4
x2e−x/2,

that, inserted into the given equation, give the equality

4

Å

2ke−x/2 − 2kxe−x/2 +
k

4
x2e−x/2

ã

+ 4

Å

2kxe−x/2 −
k

2
x2e−x/2

ã

+ kx2e−x/2 = 3e−x/2,

from which, after the semplifications (according to the colors)

8ke−x/2
✘
✘

✘
✘
✘
✘

−8kxe−x/2
✘

✘
✘
✘
✘✘

+kx2e−x/2
✘

✘
✘
✘

✘
✘

+8kxe−x/2
✘
✘
✘

✘
✘
✘✘

−2kx2e−x/2 +✘
✘
✘
✘✘

kx2e−x/2 = 3e−x/2,

we get 8ke−x/2 = 3e−x/2, that is the equality 8k = 3 between the corresponding coefficients and then k = 3/8.

The solution of the given differential equation is then

y(x) = Ae−x/2 + Bxe−x/2 +
3

8
x2e−x/2,

whose first derivative is

y′(x) = −
A

2
e−x/2 + Be−x/2 −

B

2
xe−x/2 +

3

4
xe−x/2 −

3

16
x2e−x/2,
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from which, by imposing the initial conditions y(0) = −2, y′(0) = 2 of the Cauchy problem, the system

ß

A = −2
−A/2 + B = 2

follows, having solution A = −2, B = 1. The solution of the given Cauchy problem is then

y(x) = −2e−x/2 + xe−x/2 +
3

8
x2e−x/2.

Exercise 3. The Lagrangian function L(x, y, z;λ) associated to the given optimization problem is

L(x, y, z;λ) = x+ 2y − 3z + λ(2x2 + y2 − z2 + x+ z + 3),

from which the first order conditions















1 + 4λx+ λ = 0
2 + 2λy = 0
−3− 2λz + λ = 0
2x2 + y2 − z2 + x+ z + 3 = 0

follow. From the first, second, and third equation, we get

x = −
λ+ 1

4λ
, y = −

1

λ
, z =

λ− 3

2λ
,

respectively, that, inserted into the fourth equation, give

2

Å

−
λ+ 1

4λ

ã2

+

Å

−
1

λ

ã2

−

Å

λ− 3

2λ

ã2

−
λ+ 1

4λ
+

λ− 3

2λ
+ 3 = 0 =⇒

25λ2 − 9

8λ2
= 0,

where λ 6= 0 because λ = 0 can not be a Lagrange’s multiplier.

From 25λ2 − 9 = 0, we get λ = ±3/5 and then the optimal points (x, y, z;λ) having coordinates

A =

Å

−
2

3
,−

5

3
,− 2;

3

5

ã

and B =

Å

1

6
,
5

3
, 3;−

3

5

ã

.

The bordered hessian matrix of this optimization problem is

H(x, y, z;λ) =

á

0 4x+ 1 2y 1− 2z

4x+ 1 4λ 0 0

2y 0 2λ 0

1− 2z 0 0 −2λ

ë

,

and we remind the general second order conditions based on the analysis of the bordered hessian matrix.

Given a square matrix H of order n and a positive integer number k 6 n, the minor matrix consisting of the

first k rows and the first k columns of H is called leading principal minor of order k included in the matrix H .

In order to fix the ideas, we consider for example a square matrix of order 5

H =

à

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

í

,

in which we highlight all leading principal minors, from the order 1 until the highest possible order 5
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• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

and we denote by Hk the determinant of the leading principal minor of order k included in the matrix H .

The general second order conditions based on the analysis of the bordered hessian matrix H now read in the

following way. Given the optimization problem consisting of optimizing a function depending on n variables

subject to p < n constraints, we consider the bordered hessian matrix H(P ) corresponding to the optimization

problem, evaluated in an optimal point P determined by means of the first order conditions. We then have that

• if it yields

(−1)p+1H2p+1(P ) > 0,
(−1)p+2H2p+2(P ) > 0,
(−1)p+3H2p+3(P ) > 0,

...

(−1)nHn+p(P ) > 0,

(3a)

the point P is the maximum point;

• if it yields

(−1)pH2p+1(P ) > 0,
(−1)pH2p+2(P ) > 0,
(−1)pH2p+3(P ) > 0,

...

(−1)pHn+p(P ) > 0,

(3b)

the point P is the minimum point.

It is important to point out that conditions (3) are sufficient conditions, only, and it is also possible that they

do not hold. If conditions (3) do not hold, we have to conclude that the nature of the optimal point can not be

determined by means of the second order conditions (3), and conditions of higher order are have to be studied.

In the exercise of the exam, we have the bordered hessian matrices evaluated in the two optimal points A,B

H(A) =

à

0 −5/3 −10/3 5

−5/3 12/5 0 0

−10/3 0 6/5 0

5 0 0 −6/5

í

and H(B) =

à

0 5/3 10/3 −5

5/3 −12/5 0 0

10/3 0 −6/5 0

−5 0 0 6/5

í

.

Since we have n = 3 variables and p = 1 constraint, we have 2p + 1 = 3 and n + p = 4, that is we have

to compute the determinant of the leading principal minors of order 3 and of order 4 of the bordered hessian

matrices H(A), H(B) evaluated in the optimal points.

9



The leading principal minors of order 3 and of order 4 of H(A) have determinant

det

Ö

0 −5/3 −10/3

−5/3 12/5 0

−10/3 0 6/5

è

=

[

5

3
det

(

−5/3 0

−10/3 6/5

)]

−

[

10

3
det

(

−5/3 12/5

−10/3 0

)]

=

=

ïÅ

5

3

ã

(−2)

ò

−

ïÅ

10

3

ã

(8)

ò

= −30 < 0

and

detH(A) = det

à

0 −5/3 −10/3 5

−5/3 12/5 0 0

−10/3 0 6/5 0

5 0 0 −6/5

í

=

= −5 det

Ö

−5/3 −10/3 5

12/5 0 0

0 6/5 0

è

−
6

5
det

Ö

0 −5/3 −10/3

−5/3 12/5 0

−10/3 0 6/5

è

=

= −5

Å

−
6

5

ã

det

(

−5/3 5

12/5 0

)

−
6

5

[

5

3
det

(

−5/3 0

−10/3 6/5

)

−
10

3
det

(

−5/3 12/5

−10/3 0

)]

=

=

ï

−5

Å

−
6

5

ã

(−12)

ò

−

ß

6

5

ï

5

3
(−2)−

10

3
(8)

ò™

= −72 + 36 = −36 < 0,

that is the leading principal minors H3(A),H4(A) fullfil the conditions (3b)

−H3(A) > 0 and −H4(A) > 0,

from which we can conclude that the point A is the minimum point.

By observing that the elements of the bordered hessian matrices H(B) have the opposite sign with respect to

the elements of the bordered hessian matrices H(A), we have that the determinant of the leading principal minor

H3(B) has opposite sign with respect to the determinant of the leading principal minor H3(A), because H3 is

a matrix of odd order, whereas the determinant of the leading principal minor H4(B) has the same sign of the

determinant of the leading principal minor H4(A), because H4 is a matrix of even order.

From H3(B) > 0 and H4(B) < 0, it follows that the leading principal minors H3(B),H4(B) fullfil the

conditions (3a)

H3(B) > 0 and −H4(B) > 0,

from which we obtain that the point B is the maximum point.
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MATHEMATICS FOR FINANCE Exam

February 2024, the 6th

Surname Name

ID Number

Exercise 1. Given the canonical basis BR4 = {e1, e2, e3, e4} of the vector spaces R4, and the linear applica-

tion L : R4 −→ R
4 acting on the basis vectors of R4 according the transformation laws















L(e1) = −2e1 + e3 + e4

L(e2) = −2e1 + e2 + e3 − 3e4

L(e3) = −2e1 + e2 + e3

L(e4) = 3e2 ,

1) write the matrix A associated to the linear application L with respect to the given basis;

2) find the subspaces kernel and image of the linear application L determining their dimension and a basis for

both subspaces;

3) find the orthogonal projection of the vector u = (1, 0, 2,−1) on the subspace image of L.

Let us consider the linear application L̃ : R4 −→ R
4 defined by the transformation laws of the components

L̃(x1, x2, x3, x4) = (x3, x4, x1 − x4,−x2),

where in the vector space R
4 the same basis BR4 is fixed as before.

4) Write the matrix B associated to the linear application L̃ with respect to the given basis and determine the

matrix, denoted by M , associated to the composition of linear applications L ◦ L̃ (matrix product AB).

5) Verify whether the matrix M is diagonalizable.

If M is diagonalizable,

6) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by D and write

the matrix C of the basis change such that C−1MC = D;

7) write the diagonal matrix D (without performing the matrix multiplication C−1MC);

8) in the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2, find an

eingenvector v of M which is orthogonal to the vector w = (−3, 1, 4,−1);

9) find a basis of the subspace orthogonal complement of the eigenspace of the matrix M corresponding to

the eigenvalue having algebraic multiplicity 2.

Exercise 2. Solve the following Cauchy problem






y′′(x) + 4y′(x) + 4y(x) = (6x− 2)e−2x

y(0) = 1
y′(0) = −1.

Exercise 3. Find the optimal points of the function

f(x, y, z) = 3x− 3y + 2z

subject to the constraint x2 − y2 − z2 + 3x+ z = −11.



Solution of the exam of the day February 2024, the 6th

Exercise 1.

1) The matrix A is

A =

Ü

−2 −2 −2 0

0 1 1 3

1 1 1 0

1 −3 0 0

ê

,

obtained by writing in columns the coefficients of

L(e1) = −2e1 + e3 + e4 , L(e2) = −2e1 + e2 + e3 − 3e4 ,
L(e3) = −2e1 + e2 + e3 , L(e4) = 3e2 .

2) The kernel of L is the subspace of R4 containing the vectors k = (x1, x2, x3, x4) ∈ R
4 such that the equality

L(k) = 0 holds, that is
Ü

−2 −2 −2 0

0 1 1 3

1 1 1 0

1 −3 0 0

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

which is an algebraic linear system having rank 3, because

det

Ü

−2 −2 −2 0

0 1 1 3

1 1 1 0

1 −3 0 0

ê

= 3det

Ñ

−2 −2 −2

1 1 1

1 −3 0

é

= 3

ï

det

Å

−2 −2

1 1

ã

+ 3det

Å

−2 −2

1 1

ãò

= 0

and the minor of order 3

M =

Ñ

0 1 3

1 1 0

1 0 0

é

,

highlighted in the matrix A as shown

A =

−2 −2 −2 0

0 1 1 3

1 1 1 0

1 −3 0 0

à í

,

has determinant

detM = det

Ñ

0 1 3

1 1 0

1 0 0

é

= det

Å

1 3

1 0

ã

= −3 6= 0.

By virtue of this minor M, we can extract the system






x3 + 3x4 = −t
x1 + x3 = −t
x1 = 3t

where we have given the arbitrary value x2 = t to the unknown x2 that lays out of the minor M highlighted in the

matrix A. The kernel has then dimension 1 because this linear system has the ∞4−3 = ∞1 solutions
Ü

x1

x2

x3

x4

ê

=

Ü

3

1

−4

1

ê

t,
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from which we get that a basis vector of the kernel is the vector k = (3, 1,−4, 1), as it can be verified through

L(k) = Ak =

Ü

−2 −2 −2 0

0 1 1 3

1 1 1 0

1 −3 0 0

êÜ

3

1

−4

1

ê

=

Ü

0

0

0

0

ê

.

The image of L is spanned by all those column vectors having some component contained inside the minor

highlighted in the matrix A, that is we have the basis of the image

BIm(L) = w1 =















Ü

−2

0

1

1

ê

, w2 =

Ü

−2

1

1

0

ê

, w3 =

Ü

0

1

0

0

ê













,

that is the first, third, and fourth column of A, where the fourth column for w3 has been divided by 3.

3) The orthogonal projection of the vector u on the image of L is the vector, that we denote by p belonging

to the image, such that it yields

〈u− p , w1〉 = 0, 〈u− p , w2〉 = 0, 〈u− p , w3〉 = 0. (4)

By expanding the vector p ∈ Im(L) as linear combination of the basis vectors w1,w2,w3 of the image, that

is

p = αw1 + βw2 + γw3 , (5)

we have

u− p =

Ü

1

0

2

−1

ê

− α

Ü

−2

0

1

1

ê

− β

Ü

−2

1

1

0

ê

− γ

Ü

0

1

0

0

ê

=

á

1 + 2α + 2β

−β − γ

2− α− β

−1− α

ë

,

by virtue of which the three equations (4) assume the form of the linear system







6α + 5β = −1
−5α− 6β − γ = 0
β + γ = 0.

The sum of the three equations gives the result α = −1, β = 1, γ = −1, and then, from (5), the orthogonal

projection p = (0, 0, 0,−1).

4) The matrix B associated to the linear application L̃(x1, x2, x3, x4) = (x3, x4, x1 − x4,−x2) is the matrix

B =

Ü

0 0 1 0

0 0 0 1

1 0 0 −1

0 −1 0 0

ê

,

because it reproduces the given transformation laws of L̃, that is

L̃

Ü

x1

x2

x3

x4

ê

=

Ü

0 0 1 0

0 0 0 1

1 0 0 −1

0 −1 0 0

êÜ

x1

x2

x3

x4

ê

=

Ü

x3

x4

x1 − x4

−x2

ê

.
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From the matrix B, one gets the matrix M associated to the product of linear applications in the order LL̃

M = AB =

Ü

−2 −2 −2 0

0 1 1 3

1 1 1 0

1 −3 0 0

êÜ

0 0 1 0

0 0 0 1

1 0 0 −1

0 −1 0 0

ê

=

Ü

−2 0 −2 0

1 −3 0 0

1 0 1 0

0 0 1 −3

ê

.

5,6) In order to verify whether the matrix M , which is an endomorphism of R4, is diagonalizable, we have

to extablish whether there exists a basis of the vector space R
4 consisting of four eigenvectors of M , that is we

have to verify, in other words, whether there exist four linearly independent eigenvectors of M , which are basis

eigenvectors of their corresponding eigenspaces, denoted by E(λi), where λi represents an eigenvalue of M .

Due to the expansion of the determinant according to the fourth column, the characteristic polynomial of M
is

det(M − λI) = det

á

−2− λ 0 −2 0

1 −3− λ 0 0

1 0 1− λ 0

0 0 1 −3− λ

ë

= (−3− λ) det

Ñ

−2− λ 0 −2

1 −3− λ 0

1 0 1− λ

é

=

= (−3− λ)(−3− λ) det

Ç

−2− λ −2

1 1− λ

å

= λ(λ+ 3)2 (λ+ 1),

whose zeros are:

• the simple2 eigenvalues λ = 0 and λ = −1,

• the eigenvalue λ = −3, having algebraic multiplicity 2.

To the simple eigenvalue λ = 0 we associate the linear system (M − 0I)u = 0, that is

Ü

−2 0 −2 0

1 −3 0 0

1 0 1 0

0 0 1 −3

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M

M =

−2 0 −2 0

1 −3 0 0

1 0 1 0

0 0 1 −3

â ì

,

from which it follows that the system has ∞1 solutions, and the eigenspace E(0) has dimension 1.

By virtue of the highlighted minor matrix, we put x4 = t and solve x1 − 3x2 = 0, x1 + x3 = 0, x3 = 3t, from

which we get −x1 = x3 = 3t, x2 = t and then the first eigenvector u(0) = (−3,−1, 3, 1) as basis eigenvector of

the eigenspace E(0), satisfying effectively the equality

Ü

−2 0 −2 0

1 −3 0 0

1 0 1 0

0 0 1 −3

êÜ

−3

−1

3

1

ê

= 0

Ü

−3

−1

3

1

ê

, that is Mu(0) = 0u(0).

2We remind that an eigenvalue λ of a matrix is called simple eigenvalue if its algebraic multiplicity is 1.
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To the simple eigenvalue λ = −1, we associate the linear system [M − (−1)I]u = 0, that is
Ü

−1 0 −2 0

1 −2 0 0

1 0 2 0

0 0 1 −2

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M + I

M + I =

−1 0 −2 0

1 −2 0 0

1 0 2 0

0 0 1 −2

à í

,

from which it follows that the system has ∞1 solutions, and the eigenspace E(−1) has dimension 1.

By virtue of the highlighted minor matrix, we put x1 = t and solve −2x2 = −t, 2x3 = −t, x3−2x4 = 0, from

which we get x2 = t/2 and then, by eliminating the fractions, the second eigenvector u(−1) = (4, 2,−2,−1) as

basis eigenvector of the eigenspace E(−1), satisfying effectively the equality
Ü

−2 0 −2 0

1 −3 0 0

1 0 1 0

0 0 1 −3

êÜ

4

2

−2

−1

ê

= −

Ü

4

2

−2

−1

ê

, that is Mu(−1) = −u(−1).

To the eigenvalue λ = −3, having algebraic multiplicity 2, we associate the system (M + 3I)u = 0, that is
Ü

1 0 −2 0

1 0 0 0

1 0 4 0

0 0 1 0

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 2 by virtue of the following minor matrix of order 2 highlighted in M + 3I

M + 3I =

1 0 −2 0

1 0 0 0

1 0 4 0

0 0 1 0

à í

,

from which it follows that the system has ∞2 solutions, and the eigenspace E(−3) has dimension 2.

By virtue of the highlighted minor matrix, we put x2 = α, x4 = β and solve x1 − 2x3 = 0, x3 = 0, from

which we get x1 = x3 = 0 and then the last two eigenvectors

u
(a)
(−3) = (0, 1, 0, 0) and u

(b)
(−3) = (0, 0, 0, 1)

as basis eigenvectors of the eigenspace E(−3), satisfying effectively the equalities
Ü

−2 0 −2 0

1 −3 0 0

1 0 1 0

0 0 1 −3

êÜ

0

1

0

0

ê

= −3

Ü

0

1

0

0

ê

and

Ü

−2 0 −2 0

1 −3 0 0

1 0 1 0

0 0 1 −3

êÜ

0

0

0

1

ê

= −3

Ü

0

0

0

1

ê

,

that is Mu
(a)
(−3) = −3u

(a)
(−3) and Mu

(b)
(−3) = −3u

(b)
(−3).

Since the set B = {u(0),u(−1),u
(a)
(−3),u

(b)
(−3)}, containing the four eigenvectors of the matrix M , is linearly

independent, we conclude that the set B is a basis of the vector space R
4, and the matrix M is diagonalizable.
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The matrix C describing the basis change from the initial basis to the basis of the eigenvectors, with respect

to which M assumes diagonal form, is then the one whose columns are the four eigenvectors, that is

C =

Ü

−3 4 0 0

−1 2 1 0

3 −2 0 0

1 −1 0 1

ê

.

7) Since we have written the eigenvectors in the matrix C in the sequence corresponding to the eigenvalues in

the order λ = 0,−2, 1, 1, respectively, it follows that the diagonal matrix D, associated to M , is

D = C−1MC =

Ü

0 0 0 0

0 −1 0 0

0 0 −3 0

0 0 0 −3

ê

.

8) The eigenspace associated to the eigenvalue having algebraic multiplicity 2 is E(−3), corresponding to

the eigenvalue λ = −3, spanned by the two eigenvectors u
(a)
(−3),u

(b)
(−3). The vectors of this subspace have the

parametric form (x1, x2, x3, x4) = (0, α, 0, β), and the general vector v of this subspace, orthogonal to the given

vector w = (−3, 1, 4,−1), is the vector v = (0, α, 0, β) such that the scalar product 〈v,w〉 vanishes, that is the

equality 〈v,w〉 = 〈 (0, α, 0, β) , (−3, 1, 4,−1) 〉 = 0 holds, from which we get the relation α− β = 0.

By choosing the particular solution α = 1, β = 1, we finally obtain the particular vector v = (0, 1, 0, 1)
belonging to the eigenspace E(−3) and orthogonal to the given vector w = (−3, 1, 4,−1).

9) The eigenspace E(−3) associated to the eigenvalue having algebraic multiplicity 2 is spanned by the two

eigenvectors u
(a)
(−3),u

(b)
(−3) and its orthogonal complement consists of all vectors v⊥ = (y1, y2, y3, y4) orthogonal

to every vector of E(−3) itself. By virtue of the theorem of the orthogonal complement, it is actually sufficient

that the vectors v⊥ = (y1, y2, y3, y4) to be orthogonal to the basis eigenvectors u
(a)
(−3),u

(b)
(1) of E(−3), only.

Therefore, we impose the orthogonality conditions
¨

(y1, y2, y3, y4) , u
(a)
(−3)

∂

= 0 and
¨

(y1, y2, y3, y4) , u
(b)
(−3)

∂

= 0,

which are equivalent to the linear system having rank 2 and 4 unknowns y2 = 0, y4 = 0.

Since this system has the ∞2 solutions (y1, y2, y3, y4) = (α, 0, β, 0), we can conclude that the basis vectors

of the orthogonal complement of the eigenspace E(−3) are z1 = (1, 0, 0, 0) and z2 = (0, 0, 1, 0), effectively

satisfying the orthogonality conditions with the basis eigenvectors u
(a)
(−3),u

(b)
(−3) of E(−3)

¨

z1,u
(a)
(−3)

∂

= 0,
¨

z1,u
(b)
(−3)

∂

= 0,
¨

z2,u
(a)
(−3)

∂

= 0,
¨

z2,u
(b)
(−3)

∂

= 0.

Exercise 2.

The homogeneous equation associated to the given equation is y′′(x) + 4y′(x) + 4y(x) = 0, to which the

algebraic equation λ2 + 4λ+ 4 = 0 corresponds, having the solution λ = −2 with algebraic multiplicity 2.

The solution, that we denote by y0(x), of the homogeneous equation is then

y0(x) = Ae−2x + Bxe−2x,

and since the right-hand side of the given non-homogeneous equation is 6xe−2x − 2e−2x, that is the product of a

polynomial of first degree times the exponential e−2x, we write the particular solution yp(x) in the same form

yp(x) = (hx+ k)e−2x.

Since this yp(x) has similar terms to the ones of the solution of the homogeneous equation, we multiply yp(x)
times x and obtain the new particular solution

yp(x) = (hx2 + kx)e−2x,
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whose term with k is similar to the term Bxe−2x of the solution of the homogeneous equation. We then multiply

(hx2 + kx)e−2x by another factor x in such a way that the final particular solution yp(x) assumes the final form

yp(x) = (hx3 + kx2)e−2x

and the global solution of the given equation is the function

y(x) = y0(x) + yp(x),

having no pair of similar terms. Whereas the arbitrary constants A,B of y0(x) can be obtained through the initial

conditions, the coefficients h, k of yp(x) have to be obtained by imposing that yp(x) (together with its derivatives)

satisfies the given non-homogeneous equation. The derivatives of yp(x) are

y′p(x) = 3hx2e−2x − 2hx3e−2x + 2kxe−2x − 2kx2e−2x,

y′′p(x) = 6hxe−2x − 12hx2e−2x + 4hx3e−2x + 2ke−2x − 8kxe−2x + 4kx2e−2x,

that, inserted into the given equation, give the equality

6hxe−2x − 12hx2e−2x + 4hx3e−2x + 2ke−2x − 8kxe−2x + 4kx2e−2x+

+4 (3hx2e−2x − 2hx3e−2x + 2kxe−2x − 2kx2e−2x) + 4 (hx3e−2x + kx2e−2x) = 6xe−2x − 2e−2x,

from which, after the semplifications (according to the colors)

6hxe−2x
✭
✭
✭

✭
✭
✭✭

−12hx2e−2x
✭
✭

✭
✭
✭✭

+4hx3e−2x + 2ke−2x
✘

✘
✘
✘
✘✘

−8kxe−2x
✭

✭
✭
✭
✭✭

+4kx2e−2x+

✭
✭

✭
✭
✭

✭✭

+12hx2e−2x
✭
✭
✭
✭

✭✭

−8hx3e−2x
✘

✘
✘

✘
✘✘

+8kxe−2x
✭

✭
✭
✭
✭✭

−8kx2e−2x
✭

✭
✭
✭

✭✭

+4hx3e−2x
✭

✭
✭

✭
✭✭

+4kx2e−2x = 6xe−2x − 2e−2x,

we get

6hxe−2x + 2ke−2x = 6xe−2x − 2e−2x,

that is the equalities 6h = 6, 2k = −2 between the corresponding coefficients and then h = 1, k = −1.

The solution of the given differential equation is then

y(x) = Ae−2x + Bxe−2x + x3e−2x − x2e−2x,

whose first derivative is

y′(x) = −2Ae−2x + Be−2x − 2Bxe−2x + 3x2e−2x − 2x3e−2x − 2xe−2x + 2x2e−2x,

from which, by imposing the initial conditions y(0) = 1, y′(0) = −1 of the Cauchy problem, the system

ß

A = 1
− 2A+ B = −1

follows, having solution A = 1, B = 1. The solution of the given Cauchy problem is then

y(x) = e−2x + xe−2x + x3e−2x − x2e−2x.

Exercise 3. The Lagrangian function L(x, y, z;λ) associated to the given optimization problem is

L(x, y, z;λ) = 3x− 3y + 2z + λ(x2 − y2 − z2 + 3x+ z + 11),

from which the first order conditions















3 + 2λx+ 3λ = 0
−3− 2λy = 0
2− 2λz + λ = 0
x2 − y2 − z2 + 3x+ z + 3 = 0
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follow. From the first, second, and third equation, we get

x = −
3λ+ 3

2λ
, y = −

3

2λ
, z =

λ+ 2

2λ
,

respectively, that, inserted into the fourth equation, give

Å

−
3λ+ 3

2λ

ã2

−

Å

−
3

2λ

ã2

−

Å

λ+ 2

2λ

ã2

−
9λ+ 9

2λ
+

λ+ 2

2λ
+ 11 = 0 =⇒

36λ2 − 4

4λ2
= 0,

where λ 6= 0 because λ = 0 can not be a Lagrange’s multiplier. From 36λ2 − 4 = 0, we get λ = ±1/3 and then

the optimal points (x, y, z;λ) having coordinates

A =

Å

− 6,−
9

2
,
7

2
;
1

3

ã

and B =

Å

3,
9

2
,−

5

2
;−

1

3

ã

.

The bordered hessian matrix of this optimization problem is

H(x, y, z;λ) =

á

0 2x+ 3 −2y 1− 2z

2x+ 3 2λ 0 0

−2y 0 −2λ 0

1− 2z 0 0 −2λ

ë

,

and we remind the general second order conditions based on the analysis of the bordered hessian matrix.

Given a square matrix H of order n and a positive integer number k 6 n, the minor matrix consisting of the

first k rows and the first k columns of H is called leading principal minor of order k included in the matrix H .

In order to fix the ideas, we consider for example a square matrix of order 5

H =

à

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

í

,

in which we highlight all leading principal minors, from the order 1 until the highest possible order 5

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

and we denote by Hk the determinant of the leading principal minor of order k included in the matrix H .

The general second order conditions based on the analysis of the bordered hessian matrix H now read in the

following way. Given the optimization problem consisting of optimizing a function depending on n variables

subject to p < n constraints, we consider the bordered hessian matrix H(P ) corresponding to the optimization

problem, evaluated in an optimal point P determined by means of the first order conditions. We then have that
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• if it yields

(−1)p+1H2p+1(P ) > 0,
(−1)p+2H2p+2(P ) > 0,
(−1)p+3H2p+3(P ) > 0,

...

(−1)nHn+p(P ) > 0,

(6a)

the point P is the maximum point;

• if it yields

(−1)pH2p+1(P ) > 0,
(−1)pH2p+2(P ) > 0,
(−1)pH2p+3(P ) > 0,

...

(−1)pHn+p(P ) > 0,

(6b)

the point P is the minimum point.

It is important to point out that conditions (6) are sufficient conditions, only, and it is also possible that they

do not hold. If conditions (6) do not hold, we have to conclude that the nature of the optimal point can not be

determined by means of the second order conditions (6), and conditions of higher order are have to be studied.

In the exercise of the exam, we have the bordered hessian matrices evaluated in the two optimal points A,B

H(A) =

á

0 −9 9 −6

−9 2/3 0 0

9 0 −2/3 0

−6 0 0 −2/3

ë

and H(B) =

á

0 9 −9 6

9 −2/3 0 0

−9 0 2/3 0

6 0 0 2/3

ë

.

Since we have n = 3 variables and p = 1 constraint, we have 2p + 1 = 3 and n + p = 4, that is we have

to compute the determinant of the leading principal minors of order 3 and of order 4 of the bordered hessian

matrices H(A), H(B) evaluated in the optimal points.

The leading principal minors of order 3 and of order 4 of H(A) have determinant

det

Ö

0 −9 9

−9 2/3 0

9 0 −2/3

è

= 0

and

detH(A) = 16 > 0,

that is the leading principal minors H3(A),H4(A) fullfil neither conditions (6a), nor conditions (6b), from which

we can conclude that the nature of the optimal point A can not be determined by means of the second order

conditions at disposal. By observing that the elements of the bordered hessian matrices H(B) have the opposite

sign with respect to the elements of the bordered hessian matrices H(A), we conclude that not even the nature of

the optimal point B can be studied by means of the second order conditions at disposal.
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MATHEMATICS FOR FINANCE

April 2024, the 15th

Surname Name

ID Number

Exercise 1. Given the canonical basis BR4 = {e1, e2, e3, e4} of the vector spaces R4, and the linear applica-

tion L : R4 −→ R
4 acting on the basis vectors of R4 according the transformation laws















L(e1) = e1 + 7e2 − e3 − 2e4

L(e2) = − 3e2 − 6e4

L(e3) = e2 + 2e4

L(e4) = − e1 − 4e2 − 4e4 ,

1) write the matrix A associated to the linear application L with respect to the given basis;

2) find the subspaces kernel and image of the linear application L determining their dimension and a basis for

both subspaces;

3) find the orthogonal projection of the vector u = (5, 3,−12, 7) on the subspace image of L.

Let us consider the linear application L̃ : R4 −→ R
4 defined by the transformation laws of the components

L̃(x1, x2, x3, x4) = (x3,− x1 + x4, x2 + x4, x1 + x3),

where in the vector space R
4 the same basis BR4 is fixed as before.

4) Write the matrix B associated to the linear application L̃ with respect to the given basis and determine the

matrix, denoted by M , associated to the composition of linear applications L ◦ L̃ (matrix product AB).

5) Verify whether the matrix M is diagonalizable.

If M is diagonalizable,

6) find the basis vectors with respect to which the matrix M assumes a diagonal form denoted by D and write

the matrix C of the basis change such that C−1MC = D;

7) write the diagonal matrix D (without performing the matrix multiplication C−1MC);

8) in the eigenspace of the matrix M corresponding to the eigenvalue having algebraic multiplicity 2, find an

eingenvector v of M which is orthogonal to the vector w = (−1,−2, 5, 3);

9) find a basis of the subspace orthogonal complement of the eigenspace of the matrix M corresponding to

the eigenvalue having algebraic multiplicity 2.

Exercise 2. Solve the following Cauchy problem






y′′(x) + 6y′(x) + 9y(x) = (−2 + 6x) e−3x

y(0) = −1
y′(0) = 1

Exercise 3. Find the optimal points of the function

f(x, y, z) = x− y + z subject to the constraint 2x2 + y2 − xy − z2 + z = 2/7.

HINT.: from the two equations ∂L/∂x = 0 and ∂L/∂y = 0, you should obtain x, y in terms of λ.



Solution of the exam of the day April 2024, the 15th

Exercise 1.

1) The matrix A is

A =

Ü

1 0 0 −1

7 −3 1 −4

−1 0 0 0

−2 −6 2 −4

ê

,

obtained by writing in the i-th column the coefficients of the result of L(ei)

L(e1) = e1 + 7e2 − e3 − 2e4 , L(e2) = − 3e2 − 6e4 ,
L(e3) = e2 + 2e4 , L(e4) = − e1 − 4e2 − 4e4 .

2) The kernel of L is the subspace of R4 containing the vectors k = (x1, x2, x3, x4) ∈ R
4 such that the equality

L(k) = 0 holds, that is
Ü

1 0 0 −1

7 −3 1 −4

−1 0 0 0

−2 −6 2 −4

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

which is an algebraic linear system having rank 3, because

det

Ü

1 0 0 −1

7 −3 1 −4

−1 0 0 0

−2 −6 2 −4

ê

= −1 det

Ñ

0 0 −1

−3 1 −4

−6 2 −4

é

= (−1)(−1) det

Å

−3 1

−6 2

ã

= 0

and the minor of order 3

M =

Ñ

7 1 −4

−1 0 0

−2 2 −4

é

,

highlighted in the matrix A as shown

A =

1 0 0 −1

7 −3 1 −4

−1 0 0 0

−2 −6 2 −4

â ì

,

has determinant

detM = det

Ñ

7 1 −4

−1 0 0

−2 2 −4

é

= det

Å

1 −4

2 −4

ã

= 4 6= 0.

By virtue of this minor M, we can extract the system






7x1 + x3 − 4x4 = 3t
− x1 = 0
−2x1 + 2x3 − 4x4 = 6t

where we have given the arbitrary value x2 = t to the unknown x2 that lays out of the minor M highlighted in the

matrix A. The kernel has then dimension 1 because this linear system has the ∞4−3 = ∞1 solutions
Ü

x1

x2

x3

x4

ê

=

Ü

0

1

3

0

ê

t,
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from which we get that a basis vector of the kernel is the vector k = (0, 1, 3, 0), as it can be verified through

L(k) = Ak =

Ü

1 0 0 −1

7 −3 1 −4

−1 0 0 0

−2 −6 2 −4

êÜ

0

1

3

0

ê

=

Ü

0

0

0

0

ê

.

The image of L is spanned by all those column vectors having some component contained inside the minor

highlighted in the matrix A, that is we have the basis of the image

BIm(L) = w1 =















Ü

1

7

−1

−2

ê

, w2 =

Ü

0

1

0

2

ê

, w3 =

Ü

1

4

0

4

ê













,

that is the first, third, and fourth column of A, where the fourth column has been taken with the opposite sign.

3) The orthogonal projection of the vector u on the image of L is the vector, that we denote by p belonging

to the image, such that it yields

〈u− p , w1〉 = 0, 〈u− p , w2〉 = 0, 〈u− p , w3〉 = 0. (7)

By expanding the vector p ∈ Im(L) as linear combination of the basis vectors w1,w2,w3 of the image, that

is

p = αw1 + βw2 + γw3 ,

we have

u− p =

Ü

5

3

−12

7

ê

− α

Ü

1

7

−1

−2

ê

− β

Ü

0

1

0

2

ê

− γ

Ü

1

4

0

4

ê

=

á

5− α− γ

3− 7α− β − 4γ

−12 + α

7 + 2α− 2β − 4γ

ë

,

by virtue of which the three equations (7) assume the form of the linear system







55α + 3β + 21γ = 24
3α + 5β + 12γ = 17
7α + 4β + 11γ = 15,

in which the third equation has been divided by 3. By subtracting the third equation multiplied by 3 from the

first equation multiplied by 4, we get the equation 199α+ 51γ = 51, whereas by subtracting the second equation

multiplied by 4 from the third equation multiplied by 5, we get the equation 23α + 7γ = 7.

By applying Cramer’s rule to the unknown α of the system

ß

199α + 51γ = 51
23α + 7γ = 7,

we get α = 0 and then β = 1, γ = 1, from which the orthogonal projection p = (1, 5, 0, 6) follows.

4) The matrix B associated to the linear application L̃(x1, x2, x3, x4) = (x3,−x1 + x4, x2 + x4, x1 + x3) is

the matrix

B =

Ü

0 0 1 0

−1 0 0 1

0 1 0 1

1 0 1 0

ê

,
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because it reproduces the given transformation laws of L̃, that is

L̃

Ü

x1

x2

x3

x4

ê

=

Ü

0 0 1 0

−1 0 0 1

0 1 0 1

1 0 1 0

êÜ

x1

x2

x3

x4

ê

=

Ü

x3

−x1 + x4

x2 + x4

x1 + x3

ê

.

From the matrix B, one gets the matrix M associated to the product of linear applications in the order LL̃

M = AB =

Ü

1 0 0 −1

7 −3 1 −4

−1 0 0 0

−2 −6 2 −4

êÜ

0 0 1 0

−1 0 0 1

0 1 0 1

1 0 1 0

ê

=

Ü

−1 0 0 0

−1 1 3 −2

0 0 −1 0

2 2 −6 −4

ê

.

5,6) In order to verify whether the matrix M , which is an endomorphism of R4, is diagonalizable, we have

to extablish whether there exists a basis of the vector space R
4 consisting of four eigenvectors of M , that is we

have to verify, in other words, whether there exist four linearly independent eigenvectors of M , which are basis

eigenvectors of their corresponding eigenspaces, denoted by E(λi), where λi represents an eigenvalue of M .

Due to the expansion of the determinant according to the first row, the characteristic polynomial of M is

det(M − λI) = det

á

−1− λ 0 0 0

−1 1− λ 3 −2

0 0 −1− λ 0

2 2 −6 −4− λ

ë

= (−1− λ) det

Ñ

1− λ 3 −2

0 −1− λ 0

2 −6 −4− λ

é

=

= (−1− λ)(−1− λ) det

Ç

1− λ −2

2 −4− λ

å

= λ(λ+ 3)(λ+ 1)2,

whose zeros are:

• the simple3 eigenvalues λ = 0 and λ = −3,

• the eigenvalue λ = −1, having algebraic multiplicity 2.

To the simple eigenvalue λ = 0 we associate the linear system (M − 0I)u = 0, that is

Ü

−1 0 0 0

−1 1 3 −2

0 0 −1 0

2 2 −6 −4

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M

M =

−1 0 0 0

−1 1 3 −2

0 0 −1 0

2 2 −6 −4

â ì

,

from which it follows that the system has ∞1 solutions, and the eigenspace E(0) has dimension 1.

3We remind that an eigenvalue λ of a matrix is called simple eigenvalue if its algebraic multiplicity is 1.
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By virtue of the highlighted minor matrix, we put x4 = t and solve the system







−x1 + x2 + 3x3 = 2t
−x3 = 0
2x1 + 2x2 − 6x3 = 4t,

from which we get x1 = x3 = 0, x2 = 2t and then the first eigenvector u(0) = (0, 2, 0, 1) as basis eigenvector of

the eigenspace E(0), satisfying effectively the equality

Ü

−1 0 0 0

−1 1 3 −2

0 0 −1 0

2 2 −6 −4

êÜ

0

2

0

1

ê

= 0

Ü

0

2

0

1

ê

, that is Mu(0) = 0u(0).

To the simple eigenvalue λ = −3, we associate the linear system [M − (−3)I]u = 0, that is

Ü

2 0 0 0

−1 4 3 −2

0 0 2 0

2 2 −6 −1

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 3 by virtue of the following minor matrix of order 3 highlighted in M + 3I

M + 3I =

2 0 0 0

−1 4 3 −2

0 0 2 0

2 2 −6 −1

à í

,

from which it follows that the system has ∞1 solutions, and the eigenspace E(−3) has dimension 1.

By virtue of the highlighted minor matrix, we put x4 = t and solve the system







−x1 + 4x2 + 3x3 = 2t
2x3 = 0
2x1 + 2x2 − 6x3 = t

from which we get x2 = t/2 and then, by eliminating the fractions, the second eigenvector u(−3) = (0, 1, 0, 2) as

basis eigenvector of the eigenspace E(−3), satisfying effectively the equality

Ü

−1 0 0 0

−1 1 3 −2

0 0 −1 0

2 2 −6 −4

êÜ

0

1

0

2

ê

= −3

Ü

0

1

0

2

ê

, that is Mu(−3) = −3u(−3).

To the eigenvalue λ = −1, having algebraic multiplicity 2, we associate the system (M + I)u = 0, that is

Ü

0 0 0 0

−1 2 3 −2

0 0 0 0

2 2 −6 −3

êÜ

x1

x2

x3

x4

ê

=

Ü

0

0

0

0

ê

,

having rank 2 by virtue of the following minor matrix of order 2 highlighted in M + I
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M + I =

0 0 0 0

−1 2 3 −2

0 0 0 0

2 2 −6 −3

à í

,

from which it follows that the system has ∞2 solutions, and the eigenspace E(−1) has dimension 2.

By virtue of the highlighted minor matrix, we put x3 = α, x4 = β and solve the system

ß

−x1 + 2x2 = −3α + 2β
2x1 + 2x2 = 6α + 3β

from which we get x1 = 3α + β/3, x2 = 7β/6 and then the last two eigenvectors

u
(a)
(−1) = (3, 0, 1, 0) and u

(b)
(−1) = (2, 7, 0, 6)

as basis eigenvectors of the eigenspace E(−1), satisfying effectively the equalities

Ü

−1 0 0 0

−1 1 3 −2

0 0 −1 0

2 2 −6 −4

êÜ

3

0

1

0

ê

= −

Ü

3

0

1

0

ê

and

Ü

−1 0 0 0

−1 1 3 −2

0 0 −1 0

2 2 −6 −4

êÜ

2

7

0

6

ê

= −

Ü

2

7

0

6

ê

,

that is Mu
(a)
(−1) = −u

(a)
(−1) and Mu

(b)
(−1) = −u

(b)
(−1).

Since the set B = {u(0),u(−3),u
(a)
(−1),u

(b)
(−1)}, containing the four eigenvectors of the matrix M , is linearly

independent, we conclude that the set B is a basis of the vector space R
4, and the matrix M is diagonalizable.

The matrix C describing the basis change from the initial basis to the basis of the eigenvectors, with respect

to which M assumes diagonal form, is then the one whose columns are the four eigenvectors, that is

C =

Ü

0 0 3 2

2 1 0 7

0 0 1 0

1 2 0 −6

ê

.

7) Since we have written the eigenvectors in the matrix C in the sequence corresponding to the eigenvalues in

the order λ = 0,−3,−1,−1, respectively, it follows that the diagonal matrix D, associated to M , is

D = C−1MC =

Ü

0 0 0 0

0 −3 0 0

0 0 −1 0

0 0 0 −1

ê

.

8) The eigenspace associated to the eigenvalue having algebraic multiplicity 2 is E(−1), corresponding to

the eigenvalue λ = −1, spanned by the two eigenvectors u
(a)
(−1),u

(b)
(−1). The vectors of this subspace have the

parametric form (x1, x2, x3, x4) = (3α + 2β, 7β, α, 6β), and the general vector v of this subspace, orthogonal to

the given vector w = (−1,−2, 5, 3), is the vector v = (3α + 2β, 7β, α, 6β) such that the scalar product 〈v,w〉
vanishes, that is the equality 〈v,w〉 = 〈 (3α + 2β, 7β, α, 6β) , (−3, 1, 4,−1) 〉 = 0 holds, from which we get the

relation α + β = 0. By choosing the particular solution α = 1, β = −1, we finally obtain the particular vector

v = (1,−7, 1,−6) belonging to the eigenspace E(−1) and orthogonal to the given vector w = (−1,−2, 5, 3).

9) The eigenspace E(−1) associated to the eigenvalue having algebraic multiplicity 2 is spanned by the two

eigenvectors u
(a)
(−1),u

(b)
(−1) and its orthogonal complement consists of all vectors v⊥ = (y1, y2, y3, y4) orthogonal
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to every vector of E(−1) itself. By virtue of the theorem of the orthogonal complement, it is actually sufficient

that the vectors v⊥ = (y1, y2, y3, y4) to be orthogonal to the basis eigenvectors u
(a)
(−1),u

(1)
(1) of E(−1), only.

Therefore, we impose the orthogonality conditions

¨

(y1, y2, y3, y4) , u
(a)
(−1)

∂

= 0 and
¨

(y1, y2, y3, y4) , u
(b)
(−1)

∂

= 0,

which are equivalent to the linear system having rank 2 and 4 unknowns y3 = −3y1, 6y4 = −2y1 − 7y2.

Since this system has the ∞2 solutions (y1, y2, y3, y4) = (3α, 6β,−9α,−α − 7β), we can conclude that the

basis vectors of the orthogonal complement of the eigenspace E(−1) are

z1 = (3, 0,−9,−1) and z2 = (0, 6, 0,−7),

effectively satisfying the orthogonality conditions with the basis eigenvectors u
(a)
(−1),u

(b)
(−1) of E(−1)

¨

z1,u
(a)
(−1)

∂

= 0,
¨

z1,u
(b)
(−1)

∂

= 0,
¨

z2,u
(a)
(−1)

∂

= 0,
¨

z2,u
(b)
(−1)

∂

= 0.

Exercise 2.

The homogeneous equation associated to the given equation is y′′(x) + 6y′(x) + 9y(x) = 0, to which the

algebraic equation λ2 + 6λ+ 9 = 0 corresponds, having the solution λ = −3 with algebraic multiplicity 2.

The solution, that we denote by y0(x), of the homogeneous equation is then

y0(x) = Ae−3x + Bxe−3x,

and since the right-hand side of the given non-homogeneous equation is 6xe−3x − 2e−3x, that is the product of a

polynomial of first degree times the exponential e−3x, we write the particular solution yp(x) in the same form

yp(x) = (hx+ k)e−3x.

Since this yp(x) has similar terms to the ones of the solution of the homogeneous equation, we multiply yp(x)
times x and obtain the new particular solution

yp(x) = (hx2 + kx)e−3x,

whose term with k is similar to the term Bxe−3x of the solution of the homogeneous equation. We then multiply

(hx2 + kx)e−3x by another factor x in such a way that the final particular solution yp(x) assumes the final form

yp(x) = (hx3 + kx2)e−3x

and the global solution of the given equation is the function

y(x) = y0(x) + yp(x),

having no pair of similar terms. Whereas the arbitrary constants A,B of y0(x) can be obtained through the initial

conditions, the coefficients h, k of yp(x) have to be obtained by imposing that yp(x) (together with its derivatives)

satisfies the given non-homogeneous equation. The derivatives of yp(x) are

y′p(x) = 3hx2e−3x − 3hx3e−3x + 2kxe−3x − 3kx2e−3x,

y′′p(x) = 6hxe−3x − 18hx2e−3x + 9hx3e−3x + 2ke−3x − 12kxe−3x + 9kx2e−3x,

that, inserted into the given equation, give the equality

6hxe−3x − 18hx2e−3x + 9hx3e−3x + 2ke−3x − 12kxe−3x + 9kx2e−3x+

+6 (3hx2e−3x − 3hx3e−3x + 2kxe−3x − 3kx2e−3x) + 9 (hx3e−3x + kx2e−3x) = 6xe−3x − 2e−3x,
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from which, after the semplifications (according to the colors)

6hxe−3x
✭
✭
✭

✭
✭
✭✭

−18hx2e−3x
✭
✭

✭
✭
✭✭

+9hx3e−3x + 2ke−3x
✭

✭
✭
✭
✭✭

−12kxe−3x
✭

✭
✭
✭
✭✭

+9kx2e−3x+

✭
✭

✭
✭
✭

✭✭

+18hx2e−3x
✭

✭
✭
✭

✭
✭✭

−18hx3e−3x
✭

✭
✭
✭
✭✭

+12kxe−3x
✭

✭
✭
✭
✭

✭✭

−18kx2e−3x
✭

✭
✭
✭

✭✭

+9hx3e−3x
✭
✭

✭
✭
✭✭

+9kx2e−3x = 6xe−3x − 2e−3x,

we get

6hxe−3x + 2ke−3x = 6xe−3x − 2e−3x,

that is the equalities 6h = 6, 2k = −2 between the corresponding coefficients and then h = 1, k = −1.

The solution of the given differential equation is then

y(x) = Ae−3x + Bxe−3x + x3e−3x − x2e−3x,

whose first derivative is

y′(x) = −3Ae−3x + Be−3x − 3Bxe−3x + 3x2e−3x − 3x3e−3x − 2xe−3x + 3x2e−3x,

from which, by imposing the initial conditions y(0) = −1, y′(0) = 1 of the Cauchy problem, the system

ß

A = −1
− 3A+ B = 1

follows, having solution A = −1, B = −2. The solution of the given Cauchy problem is then

y(x) = −e−3x − 2xe−3x + x3e−3x − x2e−3x.

Exercise 3. The Lagrangian function L(x, y, z;λ) associated to the given optimization problem is

L(x, y, z;λ) = x− y + z + λ (2x2 + y2 − xy − z2 + z − 2/7),

from which the first order conditions















1 + 4λx− λy = 0
−1 + 2λy − λx = 0
1− 2λz + λ = 0
2x2 + y2 − xy − z2 + z − 2/7 = 0

follow. If we solve the system consisting of the first two equations

ß

4λx− λy = −1
−λx+ 2λy = 1

with respect to x, y, we get

x = −
1

7λ
and y =

3

7λ
,

whereas from the third equation, we get

z =
λ+ 1

2λ
,

that, inserted into the fourth equation, give

2

49λ2
+

9

49λ2
+

3

49λ2
−

λ2 + 2λ+ 1

4λ2
+

λ+ 1

2λ
−

2

7
= 0 =⇒

1− λ2

4λ2
= 0,

where λ 6= 0 because λ = 0 can not be a Lagrange’s multiplier. From 1 − λ2 = 0, we get λ = ±1 and then the

optimal points (x, y, z;λ) having coordinates

A =

Å

−
1

7
,
3

7
, 1; 1

ã

and B =

Å

1

7
,−

3

7
, 0;−1

ã

.
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The bordered hessian matrix of this optimization problem is

H(x, y, z;λ) =

á

0 4x− y 2y − x 1− 2z

4x− y 4λ −λ 0

2y − x −λ 2λ 0

1− 2z 0 0 −2λ

ë

,

and we remind the general second order conditions based on the analysis of the bordered hessian matrix.

Given a square matrix H of order n and a positive integer number k 6 n, the minor matrix consisting of the

first k rows and the first k columns of H is called leading principal minor of order k included in the matrix H .

In order to fix the ideas, we consider for example a square matrix of order 5

H =

à

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

í

,

in which we highlight all leading principal minors, from the order 1 until the highest possible order 5

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

â ì

,

and we denote by Hk the determinant of the leading principal minor of order k included in the matrix H .

The general second order conditions based on the analysis of the bordered hessian matrix H now read in the

following way. Given the optimization problem consisting of optimizing a function depending on n variables

subject to p < n constraints, we consider the bordered hessian matrix H(P ) corresponding to the optimization

problem, evaluated in an optimal point P determined by means of the first order conditions. We then have that

• if it yields

(−1)p+1H2p+1(P ) > 0,
(−1)p+2H2p+2(P ) > 0,
(−1)p+3H2p+3(P ) > 0,

...

(−1)nHn+p(P ) > 0,

(8a)

the point P is the maximum point;

• if it yields

(−1)pH2p+1(P ) > 0,
(−1)pH2p+2(P ) > 0,
(−1)pH2p+3(P ) > 0,

...

(−1)pHn+p(P ) > 0,

(8b)
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the point P is the minimum point.

It is important to point out that conditions (8) are sufficient conditions, only, and it is also possible that they

do not hold. If conditions (8) do not hold, we have to conclude that the nature of the optimal point can not be

determined by means of the second order conditions (8), and conditions of higher order are have to be studied.

In the exercise of the exam, we have the bordered hessian matrices evaluated in the two optimal points A,B

H(A) =

Ü

0 −1 1 −1

−1 4 −1 0

1 −1 2 0

−1 0 0 −2

ê

and H(B) =

Ü

0 1 −1 1

1 −4 1 0

−1 1 −2 0

1 0 0 2

ê

.

Since we have n = 3 variables and p = 1 constraint, we have 2p + 1 = 3 and n + p = 4, that is we have

to compute the determinant of the leading principal minors of order 3 and of order 4 of the bordered hessian

matrices H(A), H(B) evaluated in the optimal points. By virtue of conditions (8a), we have that if it yields

H3(P ) > 0 and H4(P ) < 0,

the point P is the maximum point; if it yields

H3(P ) < 0 and H4(P ) < 0,

the point P is the minimum point.

Since we have

detH(A) = detH(B) = 1 > 0,

we conclude that the nature of the optimal points A,B can not be studied by means of the second order conditions

at disposal.
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